You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zher2k.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. *> \brief \b ZHER2K
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  12. *
  13. * .. Scalar Arguments ..
  14. * COMPLEX*16 ALPHA
  15. * DOUBLE PRECISION BETA
  16. * INTEGER K,LDA,LDB,LDC,N
  17. * CHARACTER TRANS,UPLO
  18. * ..
  19. * .. Array Arguments ..
  20. * COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> ZHER2K performs one of the hermitian rank 2k operations
  30. *>
  31. *> C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C,
  32. *>
  33. *> or
  34. *>
  35. *> C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C,
  36. *>
  37. *> where alpha and beta are scalars with beta real, C is an n by n
  38. *> hermitian matrix and A and B are n by k matrices in the first case
  39. *> and k by n matrices in the second case.
  40. *> \endverbatim
  41. *
  42. * Arguments:
  43. * ==========
  44. *
  45. *> \param[in] UPLO
  46. *> \verbatim
  47. *> UPLO is CHARACTER*1
  48. *> On entry, UPLO specifies whether the upper or lower
  49. *> triangular part of the array C is to be referenced as
  50. *> follows:
  51. *>
  52. *> UPLO = 'U' or 'u' Only the upper triangular part of C
  53. *> is to be referenced.
  54. *>
  55. *> UPLO = 'L' or 'l' Only the lower triangular part of C
  56. *> is to be referenced.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] TRANS
  60. *> \verbatim
  61. *> TRANS is CHARACTER*1
  62. *> On entry, TRANS specifies the operation to be performed as
  63. *> follows:
  64. *>
  65. *> TRANS = 'N' or 'n' C := alpha*A*B**H +
  66. *> conjg( alpha )*B*A**H +
  67. *> beta*C.
  68. *>
  69. *> TRANS = 'C' or 'c' C := alpha*A**H*B +
  70. *> conjg( alpha )*B**H*A +
  71. *> beta*C.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] N
  75. *> \verbatim
  76. *> N is INTEGER
  77. *> On entry, N specifies the order of the matrix C. N must be
  78. *> at least zero.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] K
  82. *> \verbatim
  83. *> K is INTEGER
  84. *> On entry with TRANS = 'N' or 'n', K specifies the number
  85. *> of columns of the matrices A and B, and on entry with
  86. *> TRANS = 'C' or 'c', K specifies the number of rows of the
  87. *> matrices A and B. K must be at least zero.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] ALPHA
  91. *> \verbatim
  92. *> ALPHA is COMPLEX*16 .
  93. *> On entry, ALPHA specifies the scalar alpha.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] A
  97. *> \verbatim
  98. *> A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
  99. *> k when TRANS = 'N' or 'n', and is n otherwise.
  100. *> Before entry with TRANS = 'N' or 'n', the leading n by k
  101. *> part of the array A must contain the matrix A, otherwise
  102. *> the leading k by n part of the array A must contain the
  103. *> matrix A.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDA
  107. *> \verbatim
  108. *> LDA is INTEGER
  109. *> On entry, LDA specifies the first dimension of A as declared
  110. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  111. *> then LDA must be at least max( 1, n ), otherwise LDA must
  112. *> be at least max( 1, k ).
  113. *> \endverbatim
  114. *>
  115. *> \param[in] B
  116. *> \verbatim
  117. *> B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is
  118. *> k when TRANS = 'N' or 'n', and is n otherwise.
  119. *> Before entry with TRANS = 'N' or 'n', the leading n by k
  120. *> part of the array B must contain the matrix B, otherwise
  121. *> the leading k by n part of the array B must contain the
  122. *> matrix B.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDB
  126. *> \verbatim
  127. *> LDB is INTEGER
  128. *> On entry, LDB specifies the first dimension of B as declared
  129. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  130. *> then LDB must be at least max( 1, n ), otherwise LDB must
  131. *> be at least max( 1, k ).
  132. *> Unchanged on exit.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] BETA
  136. *> \verbatim
  137. *> BETA is DOUBLE PRECISION .
  138. *> On entry, BETA specifies the scalar beta.
  139. *> \endverbatim
  140. *>
  141. *> \param[in,out] C
  142. *> \verbatim
  143. *> C is COMPLEX*16 array, dimension ( LDC, N )
  144. *> Before entry with UPLO = 'U' or 'u', the leading n by n
  145. *> upper triangular part of the array C must contain the upper
  146. *> triangular part of the hermitian matrix and the strictly
  147. *> lower triangular part of C is not referenced. On exit, the
  148. *> upper triangular part of the array C is overwritten by the
  149. *> upper triangular part of the updated matrix.
  150. *> Before entry with UPLO = 'L' or 'l', the leading n by n
  151. *> lower triangular part of the array C must contain the lower
  152. *> triangular part of the hermitian matrix and the strictly
  153. *> upper triangular part of C is not referenced. On exit, the
  154. *> lower triangular part of the array C is overwritten by the
  155. *> lower triangular part of the updated matrix.
  156. *> Note that the imaginary parts of the diagonal elements need
  157. *> not be set, they are assumed to be zero, and on exit they
  158. *> are set to zero.
  159. *> \endverbatim
  160. *>
  161. *> \param[in] LDC
  162. *> \verbatim
  163. *> LDC is INTEGER
  164. *> On entry, LDC specifies the first dimension of C as declared
  165. *> in the calling (sub) program. LDC must be at least
  166. *> max( 1, n ).
  167. *> \endverbatim
  168. *
  169. * Authors:
  170. * ========
  171. *
  172. *> \author Univ. of Tennessee
  173. *> \author Univ. of California Berkeley
  174. *> \author Univ. of Colorado Denver
  175. *> \author NAG Ltd.
  176. *
  177. *> \date December 2016
  178. *
  179. *> \ingroup complex16_blas_level3
  180. *
  181. *> \par Further Details:
  182. * =====================
  183. *>
  184. *> \verbatim
  185. *>
  186. *> Level 3 Blas routine.
  187. *>
  188. *> -- Written on 8-February-1989.
  189. *> Jack Dongarra, Argonne National Laboratory.
  190. *> Iain Duff, AERE Harwell.
  191. *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
  192. *> Sven Hammarling, Numerical Algorithms Group Ltd.
  193. *>
  194. *> -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
  195. *> Ed Anderson, Cray Research Inc.
  196. *> \endverbatim
  197. *>
  198. * =====================================================================
  199. SUBROUTINE ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  200. *
  201. * -- Reference BLAS level3 routine (version 3.7.0) --
  202. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  203. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  204. * December 2016
  205. *
  206. * .. Scalar Arguments ..
  207. COMPLEX*16 ALPHA
  208. DOUBLE PRECISION BETA
  209. INTEGER K,LDA,LDB,LDC,N
  210. CHARACTER TRANS,UPLO
  211. * ..
  212. * .. Array Arguments ..
  213. COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
  214. * ..
  215. *
  216. * =====================================================================
  217. *
  218. * .. External Functions ..
  219. LOGICAL LSAME
  220. EXTERNAL LSAME
  221. * ..
  222. * .. External Subroutines ..
  223. EXTERNAL XERBLA
  224. * ..
  225. * .. Intrinsic Functions ..
  226. INTRINSIC DBLE,DCONJG,MAX
  227. * ..
  228. * .. Local Scalars ..
  229. COMPLEX*16 TEMP1,TEMP2
  230. INTEGER I,INFO,J,L,NROWA
  231. LOGICAL UPPER
  232. * ..
  233. * .. Parameters ..
  234. DOUBLE PRECISION ONE
  235. PARAMETER (ONE=1.0D+0)
  236. COMPLEX*16 ZERO
  237. PARAMETER (ZERO= (0.0D+0,0.0D+0))
  238. * ..
  239. *
  240. * Test the input parameters.
  241. *
  242. IF (LSAME(TRANS,'N')) THEN
  243. NROWA = N
  244. ELSE
  245. NROWA = K
  246. END IF
  247. UPPER = LSAME(UPLO,'U')
  248. *
  249. INFO = 0
  250. IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
  251. INFO = 1
  252. ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
  253. + (.NOT.LSAME(TRANS,'C'))) THEN
  254. INFO = 2
  255. ELSE IF (N.LT.0) THEN
  256. INFO = 3
  257. ELSE IF (K.LT.0) THEN
  258. INFO = 4
  259. ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  260. INFO = 7
  261. ELSE IF (LDB.LT.MAX(1,NROWA)) THEN
  262. INFO = 9
  263. ELSE IF (LDC.LT.MAX(1,N)) THEN
  264. INFO = 12
  265. END IF
  266. IF (INFO.NE.0) THEN
  267. CALL XERBLA('ZHER2K',INFO)
  268. RETURN
  269. END IF
  270. *
  271. * Quick return if possible.
  272. *
  273. IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
  274. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
  275. *
  276. * And when alpha.eq.zero.
  277. *
  278. IF (ALPHA.EQ.ZERO) THEN
  279. IF (UPPER) THEN
  280. IF (BETA.EQ.DBLE(ZERO)) THEN
  281. DO 20 J = 1,N
  282. DO 10 I = 1,J
  283. C(I,J) = ZERO
  284. 10 CONTINUE
  285. 20 CONTINUE
  286. ELSE
  287. DO 40 J = 1,N
  288. DO 30 I = 1,J - 1
  289. C(I,J) = BETA*C(I,J)
  290. 30 CONTINUE
  291. C(J,J) = BETA*DBLE(C(J,J))
  292. 40 CONTINUE
  293. END IF
  294. ELSE
  295. IF (BETA.EQ.DBLE(ZERO)) THEN
  296. DO 60 J = 1,N
  297. DO 50 I = J,N
  298. C(I,J) = ZERO
  299. 50 CONTINUE
  300. 60 CONTINUE
  301. ELSE
  302. DO 80 J = 1,N
  303. C(J,J) = BETA*DBLE(C(J,J))
  304. DO 70 I = J + 1,N
  305. C(I,J) = BETA*C(I,J)
  306. 70 CONTINUE
  307. 80 CONTINUE
  308. END IF
  309. END IF
  310. RETURN
  311. END IF
  312. *
  313. * Start the operations.
  314. *
  315. IF (LSAME(TRANS,'N')) THEN
  316. *
  317. * Form C := alpha*A*B**H + conjg( alpha )*B*A**H +
  318. * C.
  319. *
  320. IF (UPPER) THEN
  321. DO 130 J = 1,N
  322. IF (BETA.EQ.DBLE(ZERO)) THEN
  323. DO 90 I = 1,J
  324. C(I,J) = ZERO
  325. 90 CONTINUE
  326. ELSE IF (BETA.NE.ONE) THEN
  327. DO 100 I = 1,J - 1
  328. C(I,J) = BETA*C(I,J)
  329. 100 CONTINUE
  330. C(J,J) = BETA*DBLE(C(J,J))
  331. ELSE
  332. C(J,J) = DBLE(C(J,J))
  333. END IF
  334. DO 120 L = 1,K
  335. IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
  336. TEMP1 = ALPHA*DCONJG(B(J,L))
  337. TEMP2 = DCONJG(ALPHA*A(J,L))
  338. DO 110 I = 1,J - 1
  339. C(I,J) = C(I,J) + A(I,L)*TEMP1 +
  340. + B(I,L)*TEMP2
  341. 110 CONTINUE
  342. C(J,J) = DBLE(C(J,J)) +
  343. + DBLE(A(J,L)*TEMP1+B(J,L)*TEMP2)
  344. END IF
  345. 120 CONTINUE
  346. 130 CONTINUE
  347. ELSE
  348. DO 180 J = 1,N
  349. IF (BETA.EQ.DBLE(ZERO)) THEN
  350. DO 140 I = J,N
  351. C(I,J) = ZERO
  352. 140 CONTINUE
  353. ELSE IF (BETA.NE.ONE) THEN
  354. DO 150 I = J + 1,N
  355. C(I,J) = BETA*C(I,J)
  356. 150 CONTINUE
  357. C(J,J) = BETA*DBLE(C(J,J))
  358. ELSE
  359. C(J,J) = DBLE(C(J,J))
  360. END IF
  361. DO 170 L = 1,K
  362. IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
  363. TEMP1 = ALPHA*DCONJG(B(J,L))
  364. TEMP2 = DCONJG(ALPHA*A(J,L))
  365. DO 160 I = J + 1,N
  366. C(I,J) = C(I,J) + A(I,L)*TEMP1 +
  367. + B(I,L)*TEMP2
  368. 160 CONTINUE
  369. C(J,J) = DBLE(C(J,J)) +
  370. + DBLE(A(J,L)*TEMP1+B(J,L)*TEMP2)
  371. END IF
  372. 170 CONTINUE
  373. 180 CONTINUE
  374. END IF
  375. ELSE
  376. *
  377. * Form C := alpha*A**H*B + conjg( alpha )*B**H*A +
  378. * C.
  379. *
  380. IF (UPPER) THEN
  381. DO 210 J = 1,N
  382. DO 200 I = 1,J
  383. TEMP1 = ZERO
  384. TEMP2 = ZERO
  385. DO 190 L = 1,K
  386. TEMP1 = TEMP1 + DCONJG(A(L,I))*B(L,J)
  387. TEMP2 = TEMP2 + DCONJG(B(L,I))*A(L,J)
  388. 190 CONTINUE
  389. IF (I.EQ.J) THEN
  390. IF (BETA.EQ.DBLE(ZERO)) THEN
  391. C(J,J) = DBLE(ALPHA*TEMP1+
  392. + DCONJG(ALPHA)*TEMP2)
  393. ELSE
  394. C(J,J) = BETA*DBLE(C(J,J)) +
  395. + DBLE(ALPHA*TEMP1+
  396. + DCONJG(ALPHA)*TEMP2)
  397. END IF
  398. ELSE
  399. IF (BETA.EQ.DBLE(ZERO)) THEN
  400. C(I,J) = ALPHA*TEMP1 + DCONJG(ALPHA)*TEMP2
  401. ELSE
  402. C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
  403. + DCONJG(ALPHA)*TEMP2
  404. END IF
  405. END IF
  406. 200 CONTINUE
  407. 210 CONTINUE
  408. ELSE
  409. DO 240 J = 1,N
  410. DO 230 I = J,N
  411. TEMP1 = ZERO
  412. TEMP2 = ZERO
  413. DO 220 L = 1,K
  414. TEMP1 = TEMP1 + DCONJG(A(L,I))*B(L,J)
  415. TEMP2 = TEMP2 + DCONJG(B(L,I))*A(L,J)
  416. 220 CONTINUE
  417. IF (I.EQ.J) THEN
  418. IF (BETA.EQ.DBLE(ZERO)) THEN
  419. C(J,J) = DBLE(ALPHA*TEMP1+
  420. + DCONJG(ALPHA)*TEMP2)
  421. ELSE
  422. C(J,J) = BETA*DBLE(C(J,J)) +
  423. + DBLE(ALPHA*TEMP1+
  424. + DCONJG(ALPHA)*TEMP2)
  425. END IF
  426. ELSE
  427. IF (BETA.EQ.DBLE(ZERO)) THEN
  428. C(I,J) = ALPHA*TEMP1 + DCONJG(ALPHA)*TEMP2
  429. ELSE
  430. C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
  431. + DCONJG(ALPHA)*TEMP2
  432. END IF
  433. END IF
  434. 230 CONTINUE
  435. 240 CONTINUE
  436. END IF
  437. END IF
  438. *
  439. RETURN
  440. *
  441. * End of ZHER2K.
  442. *
  443. END