You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlatbs.f 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. *> \brief \b ZLATBS solves a triangular banded system of equations.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLATBS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatbs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatbs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatbs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  22. * SCALE, CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, KD, LDAB, N
  27. * DOUBLE PRECISION SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION CNORM( * )
  31. * COMPLEX*16 AB( LDAB, * ), X( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZLATBS solves one of the triangular systems
  41. *>
  42. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
  43. *>
  44. *> with scaling to prevent overflow, where A is an upper or lower
  45. *> triangular band matrix. Here A**T denotes the transpose of A, x and b
  46. *> are n-element vectors, and s is a scaling factor, usually less than
  47. *> or equal to 1, chosen so that the components of x will be less than
  48. *> the overflow threshold. If the unscaled problem will not cause
  49. *> overflow, the Level 2 BLAS routine ZTBSV is called. If the matrix A
  50. *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
  51. *> non-trivial solution to A*x = 0 is returned.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] UPLO
  58. *> \verbatim
  59. *> UPLO is CHARACTER*1
  60. *> Specifies whether the matrix A is upper or lower triangular.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] TRANS
  66. *> \verbatim
  67. *> TRANS is CHARACTER*1
  68. *> Specifies the operation applied to A.
  69. *> = 'N': Solve A * x = s*b (No transpose)
  70. *> = 'T': Solve A**T * x = s*b (Transpose)
  71. *> = 'C': Solve A**H * x = s*b (Conjugate transpose)
  72. *> \endverbatim
  73. *>
  74. *> \param[in] DIAG
  75. *> \verbatim
  76. *> DIAG is CHARACTER*1
  77. *> Specifies whether or not the matrix A is unit triangular.
  78. *> = 'N': Non-unit triangular
  79. *> = 'U': Unit triangular
  80. *> \endverbatim
  81. *>
  82. *> \param[in] NORMIN
  83. *> \verbatim
  84. *> NORMIN is CHARACTER*1
  85. *> Specifies whether CNORM has been set or not.
  86. *> = 'Y': CNORM contains the column norms on entry
  87. *> = 'N': CNORM is not set on entry. On exit, the norms will
  88. *> be computed and stored in CNORM.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] N
  92. *> \verbatim
  93. *> N is INTEGER
  94. *> The order of the matrix A. N >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] KD
  98. *> \verbatim
  99. *> KD is INTEGER
  100. *> The number of subdiagonals or superdiagonals in the
  101. *> triangular matrix A. KD >= 0.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] AB
  105. *> \verbatim
  106. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  107. *> The upper or lower triangular band matrix A, stored in the
  108. *> first KD+1 rows of the array. The j-th column of A is stored
  109. *> in the j-th column of the array AB as follows:
  110. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  111. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDAB
  115. *> \verbatim
  116. *> LDAB is INTEGER
  117. *> The leading dimension of the array AB. LDAB >= KD+1.
  118. *> \endverbatim
  119. *>
  120. *> \param[in,out] X
  121. *> \verbatim
  122. *> X is COMPLEX*16 array, dimension (N)
  123. *> On entry, the right hand side b of the triangular system.
  124. *> On exit, X is overwritten by the solution vector x.
  125. *> \endverbatim
  126. *>
  127. *> \param[out] SCALE
  128. *> \verbatim
  129. *> SCALE is DOUBLE PRECISION
  130. *> The scaling factor s for the triangular system
  131. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
  132. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  133. *> the vector x is an exact or approximate solution to A*x = 0.
  134. *> \endverbatim
  135. *>
  136. *> \param[in,out] CNORM
  137. *> \verbatim
  138. *> CNORM is DOUBLE PRECISION array, dimension (N)
  139. *>
  140. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  141. *> contains the norm of the off-diagonal part of the j-th column
  142. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  143. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  144. *> must be greater than or equal to the 1-norm.
  145. *>
  146. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  147. *> returns the 1-norm of the offdiagonal part of the j-th column
  148. *> of A.
  149. *> \endverbatim
  150. *>
  151. *> \param[out] INFO
  152. *> \verbatim
  153. *> INFO is INTEGER
  154. *> = 0: successful exit
  155. *> < 0: if INFO = -k, the k-th argument had an illegal value
  156. *> \endverbatim
  157. *
  158. * Authors:
  159. * ========
  160. *
  161. *> \author Univ. of Tennessee
  162. *> \author Univ. of California Berkeley
  163. *> \author Univ. of Colorado Denver
  164. *> \author NAG Ltd.
  165. *
  166. *> \ingroup complex16OTHERauxiliary
  167. *
  168. *> \par Further Details:
  169. * =====================
  170. *>
  171. *> \verbatim
  172. *>
  173. *> A rough bound on x is computed; if that is less than overflow, ZTBSV
  174. *> is called, otherwise, specific code is used which checks for possible
  175. *> overflow or divide-by-zero at every operation.
  176. *>
  177. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  178. *> if A is lower triangular is
  179. *>
  180. *> x[1:n] := b[1:n]
  181. *> for j = 1, ..., n
  182. *> x(j) := x(j) / A(j,j)
  183. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  184. *> end
  185. *>
  186. *> Define bounds on the components of x after j iterations of the loop:
  187. *> M(j) = bound on x[1:j]
  188. *> G(j) = bound on x[j+1:n]
  189. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  190. *>
  191. *> Then for iteration j+1 we have
  192. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  193. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  194. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  195. *>
  196. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  197. *> column j+1 of A, not counting the diagonal. Hence
  198. *>
  199. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  200. *> 1<=i<=j
  201. *> and
  202. *>
  203. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  204. *> 1<=i< j
  205. *>
  206. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTBSV if the
  207. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  208. *> max(underflow, 1/overflow).
  209. *>
  210. *> The bound on x(j) is also used to determine when a step in the
  211. *> columnwise method can be performed without fear of overflow. If
  212. *> the computed bound is greater than a large constant, x is scaled to
  213. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  214. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  215. *>
  216. *> Similarly, a row-wise scheme is used to solve A**T *x = b or
  217. *> A**H *x = b. The basic algorithm for A upper triangular is
  218. *>
  219. *> for j = 1, ..., n
  220. *> x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  221. *> end
  222. *>
  223. *> We simultaneously compute two bounds
  224. *> G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  225. *> M(j) = bound on x(i), 1<=i<=j
  226. *>
  227. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  228. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  229. *> Then the bound on x(j) is
  230. *>
  231. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  232. *>
  233. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  234. *> 1<=i<=j
  235. *>
  236. *> and we can safely call ZTBSV if 1/M(n) and 1/G(n) are both greater
  237. *> than max(underflow, 1/overflow).
  238. *> \endverbatim
  239. *>
  240. * =====================================================================
  241. SUBROUTINE ZLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  242. $ SCALE, CNORM, INFO )
  243. *
  244. * -- LAPACK auxiliary routine --
  245. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  246. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  247. *
  248. * .. Scalar Arguments ..
  249. CHARACTER DIAG, NORMIN, TRANS, UPLO
  250. INTEGER INFO, KD, LDAB, N
  251. DOUBLE PRECISION SCALE
  252. * ..
  253. * .. Array Arguments ..
  254. DOUBLE PRECISION CNORM( * )
  255. COMPLEX*16 AB( LDAB, * ), X( * )
  256. * ..
  257. *
  258. * =====================================================================
  259. *
  260. * .. Parameters ..
  261. DOUBLE PRECISION ZERO, HALF, ONE, TWO
  262. PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
  263. $ TWO = 2.0D+0 )
  264. * ..
  265. * .. Local Scalars ..
  266. LOGICAL NOTRAN, NOUNIT, UPPER
  267. INTEGER I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
  268. DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  269. $ XBND, XJ, XMAX
  270. COMPLEX*16 CSUMJ, TJJS, USCAL, ZDUM
  271. * ..
  272. * .. External Functions ..
  273. LOGICAL LSAME
  274. INTEGER IDAMAX, IZAMAX
  275. DOUBLE PRECISION DLAMCH, DZASUM
  276. COMPLEX*16 ZDOTC, ZDOTU, ZLADIV
  277. EXTERNAL LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
  278. $ ZDOTU, ZLADIV
  279. * ..
  280. * .. External Subroutines ..
  281. EXTERNAL DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTBSV, DLABAD
  282. * ..
  283. * .. Intrinsic Functions ..
  284. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
  285. * ..
  286. * .. Statement Functions ..
  287. DOUBLE PRECISION CABS1, CABS2
  288. * ..
  289. * .. Statement Function definitions ..
  290. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  291. CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
  292. $ ABS( DIMAG( ZDUM ) / 2.D0 )
  293. * ..
  294. * .. Executable Statements ..
  295. *
  296. INFO = 0
  297. UPPER = LSAME( UPLO, 'U' )
  298. NOTRAN = LSAME( TRANS, 'N' )
  299. NOUNIT = LSAME( DIAG, 'N' )
  300. *
  301. * Test the input parameters.
  302. *
  303. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  304. INFO = -1
  305. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  306. $ LSAME( TRANS, 'C' ) ) THEN
  307. INFO = -2
  308. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  309. INFO = -3
  310. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  311. $ LSAME( NORMIN, 'N' ) ) THEN
  312. INFO = -4
  313. ELSE IF( N.LT.0 ) THEN
  314. INFO = -5
  315. ELSE IF( KD.LT.0 ) THEN
  316. INFO = -6
  317. ELSE IF( LDAB.LT.KD+1 ) THEN
  318. INFO = -8
  319. END IF
  320. IF( INFO.NE.0 ) THEN
  321. CALL XERBLA( 'ZLATBS', -INFO )
  322. RETURN
  323. END IF
  324. *
  325. * Quick return if possible
  326. *
  327. IF( N.EQ.0 )
  328. $ RETURN
  329. *
  330. * Determine machine dependent parameters to control overflow.
  331. *
  332. SMLNUM = DLAMCH( 'Safe minimum' )
  333. BIGNUM = ONE / SMLNUM
  334. CALL DLABAD( SMLNUM, BIGNUM )
  335. SMLNUM = SMLNUM / DLAMCH( 'Precision' )
  336. BIGNUM = ONE / SMLNUM
  337. SCALE = ONE
  338. *
  339. IF( LSAME( NORMIN, 'N' ) ) THEN
  340. *
  341. * Compute the 1-norm of each column, not including the diagonal.
  342. *
  343. IF( UPPER ) THEN
  344. *
  345. * A is upper triangular.
  346. *
  347. DO 10 J = 1, N
  348. JLEN = MIN( KD, J-1 )
  349. CNORM( J ) = DZASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
  350. 10 CONTINUE
  351. ELSE
  352. *
  353. * A is lower triangular.
  354. *
  355. DO 20 J = 1, N
  356. JLEN = MIN( KD, N-J )
  357. IF( JLEN.GT.0 ) THEN
  358. CNORM( J ) = DZASUM( JLEN, AB( 2, J ), 1 )
  359. ELSE
  360. CNORM( J ) = ZERO
  361. END IF
  362. 20 CONTINUE
  363. END IF
  364. END IF
  365. *
  366. * Scale the column norms by TSCAL if the maximum element in CNORM is
  367. * greater than BIGNUM/2.
  368. *
  369. IMAX = IDAMAX( N, CNORM, 1 )
  370. TMAX = CNORM( IMAX )
  371. IF( TMAX.LE.BIGNUM*HALF ) THEN
  372. TSCAL = ONE
  373. ELSE
  374. TSCAL = HALF / ( SMLNUM*TMAX )
  375. CALL DSCAL( N, TSCAL, CNORM, 1 )
  376. END IF
  377. *
  378. * Compute a bound on the computed solution vector to see if the
  379. * Level 2 BLAS routine ZTBSV can be used.
  380. *
  381. XMAX = ZERO
  382. DO 30 J = 1, N
  383. XMAX = MAX( XMAX, CABS2( X( J ) ) )
  384. 30 CONTINUE
  385. XBND = XMAX
  386. IF( NOTRAN ) THEN
  387. *
  388. * Compute the growth in A * x = b.
  389. *
  390. IF( UPPER ) THEN
  391. JFIRST = N
  392. JLAST = 1
  393. JINC = -1
  394. MAIND = KD + 1
  395. ELSE
  396. JFIRST = 1
  397. JLAST = N
  398. JINC = 1
  399. MAIND = 1
  400. END IF
  401. *
  402. IF( TSCAL.NE.ONE ) THEN
  403. GROW = ZERO
  404. GO TO 60
  405. END IF
  406. *
  407. IF( NOUNIT ) THEN
  408. *
  409. * A is non-unit triangular.
  410. *
  411. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  412. * Initially, G(0) = max{x(i), i=1,...,n}.
  413. *
  414. GROW = HALF / MAX( XBND, SMLNUM )
  415. XBND = GROW
  416. DO 40 J = JFIRST, JLAST, JINC
  417. *
  418. * Exit the loop if the growth factor is too small.
  419. *
  420. IF( GROW.LE.SMLNUM )
  421. $ GO TO 60
  422. *
  423. TJJS = AB( MAIND, J )
  424. TJJ = CABS1( TJJS )
  425. *
  426. IF( TJJ.GE.SMLNUM ) THEN
  427. *
  428. * M(j) = G(j-1) / abs(A(j,j))
  429. *
  430. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  431. ELSE
  432. *
  433. * M(j) could overflow, set XBND to 0.
  434. *
  435. XBND = ZERO
  436. END IF
  437. *
  438. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  439. *
  440. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  441. *
  442. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  443. ELSE
  444. *
  445. * G(j) could overflow, set GROW to 0.
  446. *
  447. GROW = ZERO
  448. END IF
  449. 40 CONTINUE
  450. GROW = XBND
  451. ELSE
  452. *
  453. * A is unit triangular.
  454. *
  455. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  456. *
  457. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  458. DO 50 J = JFIRST, JLAST, JINC
  459. *
  460. * Exit the loop if the growth factor is too small.
  461. *
  462. IF( GROW.LE.SMLNUM )
  463. $ GO TO 60
  464. *
  465. * G(j) = G(j-1)*( 1 + CNORM(j) )
  466. *
  467. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  468. 50 CONTINUE
  469. END IF
  470. 60 CONTINUE
  471. *
  472. ELSE
  473. *
  474. * Compute the growth in A**T * x = b or A**H * x = b.
  475. *
  476. IF( UPPER ) THEN
  477. JFIRST = 1
  478. JLAST = N
  479. JINC = 1
  480. MAIND = KD + 1
  481. ELSE
  482. JFIRST = N
  483. JLAST = 1
  484. JINC = -1
  485. MAIND = 1
  486. END IF
  487. *
  488. IF( TSCAL.NE.ONE ) THEN
  489. GROW = ZERO
  490. GO TO 90
  491. END IF
  492. *
  493. IF( NOUNIT ) THEN
  494. *
  495. * A is non-unit triangular.
  496. *
  497. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  498. * Initially, M(0) = max{x(i), i=1,...,n}.
  499. *
  500. GROW = HALF / MAX( XBND, SMLNUM )
  501. XBND = GROW
  502. DO 70 J = JFIRST, JLAST, JINC
  503. *
  504. * Exit the loop if the growth factor is too small.
  505. *
  506. IF( GROW.LE.SMLNUM )
  507. $ GO TO 90
  508. *
  509. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  510. *
  511. XJ = ONE + CNORM( J )
  512. GROW = MIN( GROW, XBND / XJ )
  513. *
  514. TJJS = AB( MAIND, J )
  515. TJJ = CABS1( TJJS )
  516. *
  517. IF( TJJ.GE.SMLNUM ) THEN
  518. *
  519. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  520. *
  521. IF( XJ.GT.TJJ )
  522. $ XBND = XBND*( TJJ / XJ )
  523. ELSE
  524. *
  525. * M(j) could overflow, set XBND to 0.
  526. *
  527. XBND = ZERO
  528. END IF
  529. 70 CONTINUE
  530. GROW = MIN( GROW, XBND )
  531. ELSE
  532. *
  533. * A is unit triangular.
  534. *
  535. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  536. *
  537. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  538. DO 80 J = JFIRST, JLAST, JINC
  539. *
  540. * Exit the loop if the growth factor is too small.
  541. *
  542. IF( GROW.LE.SMLNUM )
  543. $ GO TO 90
  544. *
  545. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  546. *
  547. XJ = ONE + CNORM( J )
  548. GROW = GROW / XJ
  549. 80 CONTINUE
  550. END IF
  551. 90 CONTINUE
  552. END IF
  553. *
  554. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  555. *
  556. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  557. * elements of X is not too small.
  558. *
  559. CALL ZTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
  560. ELSE
  561. *
  562. * Use a Level 1 BLAS solve, scaling intermediate results.
  563. *
  564. IF( XMAX.GT.BIGNUM*HALF ) THEN
  565. *
  566. * Scale X so that its components are less than or equal to
  567. * BIGNUM in absolute value.
  568. *
  569. SCALE = ( BIGNUM*HALF ) / XMAX
  570. CALL ZDSCAL( N, SCALE, X, 1 )
  571. XMAX = BIGNUM
  572. ELSE
  573. XMAX = XMAX*TWO
  574. END IF
  575. *
  576. IF( NOTRAN ) THEN
  577. *
  578. * Solve A * x = b
  579. *
  580. DO 120 J = JFIRST, JLAST, JINC
  581. *
  582. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  583. *
  584. XJ = CABS1( X( J ) )
  585. IF( NOUNIT ) THEN
  586. TJJS = AB( MAIND, J )*TSCAL
  587. ELSE
  588. TJJS = TSCAL
  589. IF( TSCAL.EQ.ONE )
  590. $ GO TO 110
  591. END IF
  592. TJJ = CABS1( TJJS )
  593. IF( TJJ.GT.SMLNUM ) THEN
  594. *
  595. * abs(A(j,j)) > SMLNUM:
  596. *
  597. IF( TJJ.LT.ONE ) THEN
  598. IF( XJ.GT.TJJ*BIGNUM ) THEN
  599. *
  600. * Scale x by 1/b(j).
  601. *
  602. REC = ONE / XJ
  603. CALL ZDSCAL( N, REC, X, 1 )
  604. SCALE = SCALE*REC
  605. XMAX = XMAX*REC
  606. END IF
  607. END IF
  608. X( J ) = ZLADIV( X( J ), TJJS )
  609. XJ = CABS1( X( J ) )
  610. ELSE IF( TJJ.GT.ZERO ) THEN
  611. *
  612. * 0 < abs(A(j,j)) <= SMLNUM:
  613. *
  614. IF( XJ.GT.TJJ*BIGNUM ) THEN
  615. *
  616. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  617. * to avoid overflow when dividing by A(j,j).
  618. *
  619. REC = ( TJJ*BIGNUM ) / XJ
  620. IF( CNORM( J ).GT.ONE ) THEN
  621. *
  622. * Scale by 1/CNORM(j) to avoid overflow when
  623. * multiplying x(j) times column j.
  624. *
  625. REC = REC / CNORM( J )
  626. END IF
  627. CALL ZDSCAL( N, REC, X, 1 )
  628. SCALE = SCALE*REC
  629. XMAX = XMAX*REC
  630. END IF
  631. X( J ) = ZLADIV( X( J ), TJJS )
  632. XJ = CABS1( X( J ) )
  633. ELSE
  634. *
  635. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  636. * scale = 0, and compute a solution to A*x = 0.
  637. *
  638. DO 100 I = 1, N
  639. X( I ) = ZERO
  640. 100 CONTINUE
  641. X( J ) = ONE
  642. XJ = ONE
  643. SCALE = ZERO
  644. XMAX = ZERO
  645. END IF
  646. 110 CONTINUE
  647. *
  648. * Scale x if necessary to avoid overflow when adding a
  649. * multiple of column j of A.
  650. *
  651. IF( XJ.GT.ONE ) THEN
  652. REC = ONE / XJ
  653. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  654. *
  655. * Scale x by 1/(2*abs(x(j))).
  656. *
  657. REC = REC*HALF
  658. CALL ZDSCAL( N, REC, X, 1 )
  659. SCALE = SCALE*REC
  660. END IF
  661. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  662. *
  663. * Scale x by 1/2.
  664. *
  665. CALL ZDSCAL( N, HALF, X, 1 )
  666. SCALE = SCALE*HALF
  667. END IF
  668. *
  669. IF( UPPER ) THEN
  670. IF( J.GT.1 ) THEN
  671. *
  672. * Compute the update
  673. * x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
  674. * x(j)* A(max(1,j-kd):j-1,j)
  675. *
  676. JLEN = MIN( KD, J-1 )
  677. CALL ZAXPY( JLEN, -X( J )*TSCAL,
  678. $ AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
  679. I = IZAMAX( J-1, X, 1 )
  680. XMAX = CABS1( X( I ) )
  681. END IF
  682. ELSE IF( J.LT.N ) THEN
  683. *
  684. * Compute the update
  685. * x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
  686. * x(j) * A(j+1:min(j+kd,n),j)
  687. *
  688. JLEN = MIN( KD, N-J )
  689. IF( JLEN.GT.0 )
  690. $ CALL ZAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
  691. $ X( J+1 ), 1 )
  692. I = J + IZAMAX( N-J, X( J+1 ), 1 )
  693. XMAX = CABS1( X( I ) )
  694. END IF
  695. 120 CONTINUE
  696. *
  697. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  698. *
  699. * Solve A**T * x = b
  700. *
  701. DO 170 J = JFIRST, JLAST, JINC
  702. *
  703. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  704. * k<>j
  705. *
  706. XJ = CABS1( X( J ) )
  707. USCAL = TSCAL
  708. REC = ONE / MAX( XMAX, ONE )
  709. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  710. *
  711. * If x(j) could overflow, scale x by 1/(2*XMAX).
  712. *
  713. REC = REC*HALF
  714. IF( NOUNIT ) THEN
  715. TJJS = AB( MAIND, J )*TSCAL
  716. ELSE
  717. TJJS = TSCAL
  718. END IF
  719. TJJ = CABS1( TJJS )
  720. IF( TJJ.GT.ONE ) THEN
  721. *
  722. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  723. *
  724. REC = MIN( ONE, REC*TJJ )
  725. USCAL = ZLADIV( USCAL, TJJS )
  726. END IF
  727. IF( REC.LT.ONE ) THEN
  728. CALL ZDSCAL( N, REC, X, 1 )
  729. SCALE = SCALE*REC
  730. XMAX = XMAX*REC
  731. END IF
  732. END IF
  733. *
  734. CSUMJ = ZERO
  735. IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  736. *
  737. * If the scaling needed for A in the dot product is 1,
  738. * call ZDOTU to perform the dot product.
  739. *
  740. IF( UPPER ) THEN
  741. JLEN = MIN( KD, J-1 )
  742. CSUMJ = ZDOTU( JLEN, AB( KD+1-JLEN, J ), 1,
  743. $ X( J-JLEN ), 1 )
  744. ELSE
  745. JLEN = MIN( KD, N-J )
  746. IF( JLEN.GT.1 )
  747. $ CSUMJ = ZDOTU( JLEN, AB( 2, J ), 1, X( J+1 ),
  748. $ 1 )
  749. END IF
  750. ELSE
  751. *
  752. * Otherwise, use in-line code for the dot product.
  753. *
  754. IF( UPPER ) THEN
  755. JLEN = MIN( KD, J-1 )
  756. DO 130 I = 1, JLEN
  757. CSUMJ = CSUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
  758. $ X( J-JLEN-1+I )
  759. 130 CONTINUE
  760. ELSE
  761. JLEN = MIN( KD, N-J )
  762. DO 140 I = 1, JLEN
  763. CSUMJ = CSUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
  764. 140 CONTINUE
  765. END IF
  766. END IF
  767. *
  768. IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  769. *
  770. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  771. * was not used to scale the dotproduct.
  772. *
  773. X( J ) = X( J ) - CSUMJ
  774. XJ = CABS1( X( J ) )
  775. IF( NOUNIT ) THEN
  776. *
  777. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  778. *
  779. TJJS = AB( MAIND, J )*TSCAL
  780. ELSE
  781. TJJS = TSCAL
  782. IF( TSCAL.EQ.ONE )
  783. $ GO TO 160
  784. END IF
  785. TJJ = CABS1( TJJS )
  786. IF( TJJ.GT.SMLNUM ) THEN
  787. *
  788. * abs(A(j,j)) > SMLNUM:
  789. *
  790. IF( TJJ.LT.ONE ) THEN
  791. IF( XJ.GT.TJJ*BIGNUM ) THEN
  792. *
  793. * Scale X by 1/abs(x(j)).
  794. *
  795. REC = ONE / XJ
  796. CALL ZDSCAL( N, REC, X, 1 )
  797. SCALE = SCALE*REC
  798. XMAX = XMAX*REC
  799. END IF
  800. END IF
  801. X( J ) = ZLADIV( X( J ), TJJS )
  802. ELSE IF( TJJ.GT.ZERO ) THEN
  803. *
  804. * 0 < abs(A(j,j)) <= SMLNUM:
  805. *
  806. IF( XJ.GT.TJJ*BIGNUM ) THEN
  807. *
  808. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  809. *
  810. REC = ( TJJ*BIGNUM ) / XJ
  811. CALL ZDSCAL( N, REC, X, 1 )
  812. SCALE = SCALE*REC
  813. XMAX = XMAX*REC
  814. END IF
  815. X( J ) = ZLADIV( X( J ), TJJS )
  816. ELSE
  817. *
  818. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  819. * scale = 0 and compute a solution to A**T *x = 0.
  820. *
  821. DO 150 I = 1, N
  822. X( I ) = ZERO
  823. 150 CONTINUE
  824. X( J ) = ONE
  825. SCALE = ZERO
  826. XMAX = ZERO
  827. END IF
  828. 160 CONTINUE
  829. ELSE
  830. *
  831. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  832. * product has already been divided by 1/A(j,j).
  833. *
  834. X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  835. END IF
  836. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  837. 170 CONTINUE
  838. *
  839. ELSE
  840. *
  841. * Solve A**H * x = b
  842. *
  843. DO 220 J = JFIRST, JLAST, JINC
  844. *
  845. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  846. * k<>j
  847. *
  848. XJ = CABS1( X( J ) )
  849. USCAL = TSCAL
  850. REC = ONE / MAX( XMAX, ONE )
  851. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  852. *
  853. * If x(j) could overflow, scale x by 1/(2*XMAX).
  854. *
  855. REC = REC*HALF
  856. IF( NOUNIT ) THEN
  857. TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
  858. ELSE
  859. TJJS = TSCAL
  860. END IF
  861. TJJ = CABS1( TJJS )
  862. IF( TJJ.GT.ONE ) THEN
  863. *
  864. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  865. *
  866. REC = MIN( ONE, REC*TJJ )
  867. USCAL = ZLADIV( USCAL, TJJS )
  868. END IF
  869. IF( REC.LT.ONE ) THEN
  870. CALL ZDSCAL( N, REC, X, 1 )
  871. SCALE = SCALE*REC
  872. XMAX = XMAX*REC
  873. END IF
  874. END IF
  875. *
  876. CSUMJ = ZERO
  877. IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  878. *
  879. * If the scaling needed for A in the dot product is 1,
  880. * call ZDOTC to perform the dot product.
  881. *
  882. IF( UPPER ) THEN
  883. JLEN = MIN( KD, J-1 )
  884. CSUMJ = ZDOTC( JLEN, AB( KD+1-JLEN, J ), 1,
  885. $ X( J-JLEN ), 1 )
  886. ELSE
  887. JLEN = MIN( KD, N-J )
  888. IF( JLEN.GT.1 )
  889. $ CSUMJ = ZDOTC( JLEN, AB( 2, J ), 1, X( J+1 ),
  890. $ 1 )
  891. END IF
  892. ELSE
  893. *
  894. * Otherwise, use in-line code for the dot product.
  895. *
  896. IF( UPPER ) THEN
  897. JLEN = MIN( KD, J-1 )
  898. DO 180 I = 1, JLEN
  899. CSUMJ = CSUMJ + ( DCONJG( AB( KD+I-JLEN, J ) )*
  900. $ USCAL )*X( J-JLEN-1+I )
  901. 180 CONTINUE
  902. ELSE
  903. JLEN = MIN( KD, N-J )
  904. DO 190 I = 1, JLEN
  905. CSUMJ = CSUMJ + ( DCONJG( AB( I+1, J ) )*USCAL )
  906. $ *X( J+I )
  907. 190 CONTINUE
  908. END IF
  909. END IF
  910. *
  911. IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  912. *
  913. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  914. * was not used to scale the dotproduct.
  915. *
  916. X( J ) = X( J ) - CSUMJ
  917. XJ = CABS1( X( J ) )
  918. IF( NOUNIT ) THEN
  919. *
  920. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  921. *
  922. TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
  923. ELSE
  924. TJJS = TSCAL
  925. IF( TSCAL.EQ.ONE )
  926. $ GO TO 210
  927. END IF
  928. TJJ = CABS1( TJJS )
  929. IF( TJJ.GT.SMLNUM ) THEN
  930. *
  931. * abs(A(j,j)) > SMLNUM:
  932. *
  933. IF( TJJ.LT.ONE ) THEN
  934. IF( XJ.GT.TJJ*BIGNUM ) THEN
  935. *
  936. * Scale X by 1/abs(x(j)).
  937. *
  938. REC = ONE / XJ
  939. CALL ZDSCAL( N, REC, X, 1 )
  940. SCALE = SCALE*REC
  941. XMAX = XMAX*REC
  942. END IF
  943. END IF
  944. X( J ) = ZLADIV( X( J ), TJJS )
  945. ELSE IF( TJJ.GT.ZERO ) THEN
  946. *
  947. * 0 < abs(A(j,j)) <= SMLNUM:
  948. *
  949. IF( XJ.GT.TJJ*BIGNUM ) THEN
  950. *
  951. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  952. *
  953. REC = ( TJJ*BIGNUM ) / XJ
  954. CALL ZDSCAL( N, REC, X, 1 )
  955. SCALE = SCALE*REC
  956. XMAX = XMAX*REC
  957. END IF
  958. X( J ) = ZLADIV( X( J ), TJJS )
  959. ELSE
  960. *
  961. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  962. * scale = 0 and compute a solution to A**H *x = 0.
  963. *
  964. DO 200 I = 1, N
  965. X( I ) = ZERO
  966. 200 CONTINUE
  967. X( J ) = ONE
  968. SCALE = ZERO
  969. XMAX = ZERO
  970. END IF
  971. 210 CONTINUE
  972. ELSE
  973. *
  974. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  975. * product has already been divided by 1/A(j,j).
  976. *
  977. X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  978. END IF
  979. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  980. 220 CONTINUE
  981. END IF
  982. SCALE = SCALE / TSCAL
  983. END IF
  984. *
  985. * Scale the column norms by 1/TSCAL for return.
  986. *
  987. IF( TSCAL.NE.ONE ) THEN
  988. CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  989. END IF
  990. *
  991. RETURN
  992. *
  993. * End of ZLATBS
  994. *
  995. END