You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slartg.f90 3.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. !> \brief \b SLARTG generates a plane rotation with real cosine and real sine.
  2. !
  3. ! =========== DOCUMENTATION ===========
  4. !
  5. ! Online html documentation available at
  6. ! http://www.netlib.org/lapack/explore-html/
  7. !
  8. ! Definition:
  9. ! ===========
  10. !
  11. ! SUBROUTINE SLARTG( F, G, C, S, R )
  12. !
  13. ! .. Scalar Arguments ..
  14. ! REAL(wp) C, F, G, R, S
  15. ! ..
  16. !
  17. !> \par Purpose:
  18. ! =============
  19. !>
  20. !> \verbatim
  21. !>
  22. !> SLARTG generates a plane rotation so that
  23. !>
  24. !> [ C S ] . [ F ] = [ R ]
  25. !> [ -S C ] [ G ] [ 0 ]
  26. !>
  27. !> where C**2 + S**2 = 1.
  28. !>
  29. !> The mathematical formulas used for C and S are
  30. !> R = sign(F) * sqrt(F**2 + G**2)
  31. !> C = F / R
  32. !> S = G / R
  33. !> Hence C >= 0. The algorithm used to compute these quantities
  34. !> incorporates scaling to avoid overflow or underflow in computing the
  35. !> square root of the sum of squares.
  36. !>
  37. !> This version is discontinuous in R at F = 0 but it returns the same
  38. !> C and S as SLARTG for complex inputs (F,0) and (G,0).
  39. !>
  40. !> This is a more accurate version of the BLAS1 routine SROTG,
  41. !> with the following other differences:
  42. !> F and G are unchanged on return.
  43. !> If G=0, then C=1 and S=0.
  44. !> If F=0 and (G .ne. 0), then C=0 and S=sign(1,G) without doing any
  45. !> floating point operations (saves work in SBDSQR when
  46. !> there are zeros on the diagonal).
  47. !>
  48. !> If F exceeds G in magnitude, C will be positive.
  49. !>
  50. !> Below, wp=>sp stands for single precision from LA_CONSTANTS module.
  51. !> \endverbatim
  52. !
  53. ! Arguments:
  54. ! ==========
  55. !
  56. !> \param[in] F
  57. !> \verbatim
  58. !> F is REAL(wp)
  59. !> The first component of vector to be rotated.
  60. !> \endverbatim
  61. !>
  62. !> \param[in] G
  63. !> \verbatim
  64. !> G is REAL(wp)
  65. !> The second component of vector to be rotated.
  66. !> \endverbatim
  67. !>
  68. !> \param[out] C
  69. !> \verbatim
  70. !> C is REAL(wp)
  71. !> The cosine of the rotation.
  72. !> \endverbatim
  73. !>
  74. !> \param[out] S
  75. !> \verbatim
  76. !> S is REAL(wp)
  77. !> The sine of the rotation.
  78. !> \endverbatim
  79. !>
  80. !> \param[out] R
  81. !> \verbatim
  82. !> R is REAL(wp)
  83. !> The nonzero component of the rotated vector.
  84. !> \endverbatim
  85. !
  86. ! Authors:
  87. ! ========
  88. !
  89. !> \author Edward Anderson, Lockheed Martin
  90. !
  91. !> \date July 2016
  92. !
  93. !> \ingroup OTHERauxiliary
  94. !
  95. !> \par Contributors:
  96. ! ==================
  97. !>
  98. !> Weslley Pereira, University of Colorado Denver, USA
  99. !
  100. !> \par Further Details:
  101. ! =====================
  102. !>
  103. !> \verbatim
  104. !>
  105. !> Anderson E. (2017)
  106. !> Algorithm 978: Safe Scaling in the Level 1 BLAS
  107. !> ACM Trans Math Softw 44:1--28
  108. !> https://doi.org/10.1145/3061665
  109. !>
  110. !> \endverbatim
  111. !
  112. subroutine SLARTG( f, g, c, s, r )
  113. use LA_CONSTANTS, &
  114. only: wp=>sp, zero=>szero, half=>shalf, one=>sone, &
  115. rtmin=>srtmin, rtmax=>srtmax, safmin=>ssafmin, safmax=>ssafmax
  116. !
  117. ! -- LAPACK auxiliary routine --
  118. ! -- LAPACK is a software package provided by Univ. of Tennessee, --
  119. ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  120. ! February 2021
  121. !
  122. ! .. Scalar Arguments ..
  123. real(wp) :: c, f, g, r, s
  124. ! ..
  125. ! .. Local Scalars ..
  126. real(wp) :: d, f1, fs, g1, gs, p, u, uu
  127. ! ..
  128. ! .. Intrinsic Functions ..
  129. intrinsic :: abs, sign, sqrt
  130. ! ..
  131. ! .. Executable Statements ..
  132. !
  133. f1 = abs( f )
  134. g1 = abs( g )
  135. if( g == zero ) then
  136. c = one
  137. s = zero
  138. r = f
  139. else if( f == zero ) then
  140. c = zero
  141. s = sign( one, g )
  142. r = g1
  143. else if( f1 > rtmin .and. f1 < rtmax .and. &
  144. g1 > rtmin .and. g1 < rtmax ) then
  145. d = sqrt( f*f + g*g )
  146. p = one / d
  147. c = f1*p
  148. s = g*sign( p, f )
  149. r = sign( d, f )
  150. else
  151. u = min( safmax, max( safmin, f1, g1 ) )
  152. uu = one / u
  153. fs = f*uu
  154. gs = g*uu
  155. d = sqrt( fs*fs + gs*gs )
  156. p = one / d
  157. c = abs( fs )*p
  158. s = gs*sign( p, f )
  159. r = sign( d, f )*u
  160. end if
  161. return
  162. end subroutine