You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

strsv.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. *> \brief \b STRSV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE STRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INCX,LDA,N
  15. * CHARACTER DIAG,TRANS,UPLO
  16. * ..
  17. * .. Array Arguments ..
  18. * REAL A(LDA,*),X(*)
  19. * ..
  20. *
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> STRSV solves one of the systems of equations
  28. *>
  29. *> A*x = b, or A**T*x = b,
  30. *>
  31. *> where b and x are n element vectors and A is an n by n unit, or
  32. *> non-unit, upper or lower triangular matrix.
  33. *>
  34. *> No test for singularity or near-singularity is included in this
  35. *> routine. Such tests must be performed before calling this routine.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] UPLO
  42. *> \verbatim
  43. *> UPLO is CHARACTER*1
  44. *> On entry, UPLO specifies whether the matrix is an upper or
  45. *> lower triangular matrix as follows:
  46. *>
  47. *> UPLO = 'U' or 'u' A is an upper triangular matrix.
  48. *>
  49. *> UPLO = 'L' or 'l' A is a lower triangular matrix.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] TRANS
  53. *> \verbatim
  54. *> TRANS is CHARACTER*1
  55. *> On entry, TRANS specifies the equations to be solved as
  56. *> follows:
  57. *>
  58. *> TRANS = 'N' or 'n' A*x = b.
  59. *>
  60. *> TRANS = 'T' or 't' A**T*x = b.
  61. *>
  62. *> TRANS = 'C' or 'c' A**T*x = b.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] DIAG
  66. *> \verbatim
  67. *> DIAG is CHARACTER*1
  68. *> On entry, DIAG specifies whether or not A is unit
  69. *> triangular as follows:
  70. *>
  71. *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
  72. *>
  73. *> DIAG = 'N' or 'n' A is not assumed to be unit
  74. *> triangular.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> On entry, N specifies the order of the matrix A.
  81. *> N must be at least zero.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] A
  85. *> \verbatim
  86. *> A is REAL array, dimension ( LDA, N )
  87. *> Before entry with UPLO = 'U' or 'u', the leading n by n
  88. *> upper triangular part of the array A must contain the upper
  89. *> triangular matrix and the strictly lower triangular part of
  90. *> A is not referenced.
  91. *> Before entry with UPLO = 'L' or 'l', the leading n by n
  92. *> lower triangular part of the array A must contain the lower
  93. *> triangular matrix and the strictly upper triangular part of
  94. *> A is not referenced.
  95. *> Note that when DIAG = 'U' or 'u', the diagonal elements of
  96. *> A are not referenced either, but are assumed to be unity.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDA
  100. *> \verbatim
  101. *> LDA is INTEGER
  102. *> On entry, LDA specifies the first dimension of A as declared
  103. *> in the calling (sub) program. LDA must be at least
  104. *> max( 1, n ).
  105. *> \endverbatim
  106. *>
  107. *> \param[in,out] X
  108. *> \verbatim
  109. *> X is REAL array, dimension at least
  110. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  111. *> Before entry, the incremented array X must contain the n
  112. *> element right-hand side vector b. On exit, X is overwritten
  113. *> with the solution vector x.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] INCX
  117. *> \verbatim
  118. *> INCX is INTEGER
  119. *> On entry, INCX specifies the increment for the elements of
  120. *> X. INCX must not be zero.
  121. *> \endverbatim
  122. *
  123. * Authors:
  124. * ========
  125. *
  126. *> \author Univ. of Tennessee
  127. *> \author Univ. of California Berkeley
  128. *> \author Univ. of Colorado Denver
  129. *> \author NAG Ltd.
  130. *
  131. *> \date December 2016
  132. *
  133. *> \ingroup single_blas_level2
  134. *
  135. *> \par Further Details:
  136. * =====================
  137. *>
  138. *> \verbatim
  139. *>
  140. *> Level 2 Blas routine.
  141. *>
  142. *> -- Written on 22-October-1986.
  143. *> Jack Dongarra, Argonne National Lab.
  144. *> Jeremy Du Croz, Nag Central Office.
  145. *> Sven Hammarling, Nag Central Office.
  146. *> Richard Hanson, Sandia National Labs.
  147. *> \endverbatim
  148. *>
  149. * =====================================================================
  150. SUBROUTINE STRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  151. *
  152. * -- Reference BLAS level2 routine (version 3.7.0) --
  153. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  154. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  155. * December 2016
  156. *
  157. * .. Scalar Arguments ..
  158. INTEGER INCX,LDA,N
  159. CHARACTER DIAG,TRANS,UPLO
  160. * ..
  161. * .. Array Arguments ..
  162. REAL A(LDA,*),X(*)
  163. * ..
  164. *
  165. * =====================================================================
  166. *
  167. * .. Parameters ..
  168. REAL ZERO
  169. PARAMETER (ZERO=0.0E+0)
  170. * ..
  171. * .. Local Scalars ..
  172. REAL TEMP
  173. INTEGER I,INFO,IX,J,JX,KX
  174. LOGICAL NOUNIT
  175. * ..
  176. * .. External Functions ..
  177. LOGICAL LSAME
  178. EXTERNAL LSAME
  179. * ..
  180. * .. External Subroutines ..
  181. EXTERNAL XERBLA
  182. * ..
  183. * .. Intrinsic Functions ..
  184. INTRINSIC MAX
  185. * ..
  186. *
  187. * Test the input parameters.
  188. *
  189. INFO = 0
  190. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  191. INFO = 1
  192. ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  193. + .NOT.LSAME(TRANS,'C')) THEN
  194. INFO = 2
  195. ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  196. INFO = 3
  197. ELSE IF (N.LT.0) THEN
  198. INFO = 4
  199. ELSE IF (LDA.LT.MAX(1,N)) THEN
  200. INFO = 6
  201. ELSE IF (INCX.EQ.0) THEN
  202. INFO = 8
  203. END IF
  204. IF (INFO.NE.0) THEN
  205. CALL XERBLA('STRSV ',INFO)
  206. RETURN
  207. END IF
  208. *
  209. * Quick return if possible.
  210. *
  211. IF (N.EQ.0) RETURN
  212. *
  213. NOUNIT = LSAME(DIAG,'N')
  214. *
  215. * Set up the start point in X if the increment is not unity. This
  216. * will be ( N - 1 )*INCX too small for descending loops.
  217. *
  218. IF (INCX.LE.0) THEN
  219. KX = 1 - (N-1)*INCX
  220. ELSE IF (INCX.NE.1) THEN
  221. KX = 1
  222. END IF
  223. *
  224. * Start the operations. In this version the elements of A are
  225. * accessed sequentially with one pass through A.
  226. *
  227. IF (LSAME(TRANS,'N')) THEN
  228. *
  229. * Form x := inv( A )*x.
  230. *
  231. IF (LSAME(UPLO,'U')) THEN
  232. IF (INCX.EQ.1) THEN
  233. DO 20 J = N,1,-1
  234. IF (X(J).NE.ZERO) THEN
  235. IF (NOUNIT) X(J) = X(J)/A(J,J)
  236. TEMP = X(J)
  237. DO 10 I = J - 1,1,-1
  238. X(I) = X(I) - TEMP*A(I,J)
  239. 10 CONTINUE
  240. END IF
  241. 20 CONTINUE
  242. ELSE
  243. JX = KX + (N-1)*INCX
  244. DO 40 J = N,1,-1
  245. IF (X(JX).NE.ZERO) THEN
  246. IF (NOUNIT) X(JX) = X(JX)/A(J,J)
  247. TEMP = X(JX)
  248. IX = JX
  249. DO 30 I = J - 1,1,-1
  250. IX = IX - INCX
  251. X(IX) = X(IX) - TEMP*A(I,J)
  252. 30 CONTINUE
  253. END IF
  254. JX = JX - INCX
  255. 40 CONTINUE
  256. END IF
  257. ELSE
  258. IF (INCX.EQ.1) THEN
  259. DO 60 J = 1,N
  260. IF (X(J).NE.ZERO) THEN
  261. IF (NOUNIT) X(J) = X(J)/A(J,J)
  262. TEMP = X(J)
  263. DO 50 I = J + 1,N
  264. X(I) = X(I) - TEMP*A(I,J)
  265. 50 CONTINUE
  266. END IF
  267. 60 CONTINUE
  268. ELSE
  269. JX = KX
  270. DO 80 J = 1,N
  271. IF (X(JX).NE.ZERO) THEN
  272. IF (NOUNIT) X(JX) = X(JX)/A(J,J)
  273. TEMP = X(JX)
  274. IX = JX
  275. DO 70 I = J + 1,N
  276. IX = IX + INCX
  277. X(IX) = X(IX) - TEMP*A(I,J)
  278. 70 CONTINUE
  279. END IF
  280. JX = JX + INCX
  281. 80 CONTINUE
  282. END IF
  283. END IF
  284. ELSE
  285. *
  286. * Form x := inv( A**T )*x.
  287. *
  288. IF (LSAME(UPLO,'U')) THEN
  289. IF (INCX.EQ.1) THEN
  290. DO 100 J = 1,N
  291. TEMP = X(J)
  292. DO 90 I = 1,J - 1
  293. TEMP = TEMP - A(I,J)*X(I)
  294. 90 CONTINUE
  295. IF (NOUNIT) TEMP = TEMP/A(J,J)
  296. X(J) = TEMP
  297. 100 CONTINUE
  298. ELSE
  299. JX = KX
  300. DO 120 J = 1,N
  301. TEMP = X(JX)
  302. IX = KX
  303. DO 110 I = 1,J - 1
  304. TEMP = TEMP - A(I,J)*X(IX)
  305. IX = IX + INCX
  306. 110 CONTINUE
  307. IF (NOUNIT) TEMP = TEMP/A(J,J)
  308. X(JX) = TEMP
  309. JX = JX + INCX
  310. 120 CONTINUE
  311. END IF
  312. ELSE
  313. IF (INCX.EQ.1) THEN
  314. DO 140 J = N,1,-1
  315. TEMP = X(J)
  316. DO 130 I = N,J + 1,-1
  317. TEMP = TEMP - A(I,J)*X(I)
  318. 130 CONTINUE
  319. IF (NOUNIT) TEMP = TEMP/A(J,J)
  320. X(J) = TEMP
  321. 140 CONTINUE
  322. ELSE
  323. KX = KX + (N-1)*INCX
  324. JX = KX
  325. DO 160 J = N,1,-1
  326. TEMP = X(JX)
  327. IX = KX
  328. DO 150 I = N,J + 1,-1
  329. TEMP = TEMP - A(I,J)*X(IX)
  330. IX = IX - INCX
  331. 150 CONTINUE
  332. IF (NOUNIT) TEMP = TEMP/A(J,J)
  333. X(JX) = TEMP
  334. JX = JX - INCX
  335. 160 CONTINUE
  336. END IF
  337. END IF
  338. END IF
  339. *
  340. RETURN
  341. *
  342. * End of STRSV .
  343. *
  344. END