You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csyr2k.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. *> \brief \b CSYR2K
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  12. *
  13. * .. Scalar Arguments ..
  14. * COMPLEX ALPHA,BETA
  15. * INTEGER K,LDA,LDB,LDC,N
  16. * CHARACTER TRANS,UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> CSYR2K performs one of the symmetric rank 2k operations
  29. *>
  30. *> C := alpha*A*B**T + alpha*B*A**T + beta*C,
  31. *>
  32. *> or
  33. *>
  34. *> C := alpha*A**T*B + alpha*B**T*A + beta*C,
  35. *>
  36. *> where alpha and beta are scalars, C is an n by n symmetric matrix
  37. *> and A and B are n by k matrices in the first case and k by n
  38. *> matrices in the second case.
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] UPLO
  45. *> \verbatim
  46. *> UPLO is CHARACTER*1
  47. *> On entry, UPLO specifies whether the upper or lower
  48. *> triangular part of the array C is to be referenced as
  49. *> follows:
  50. *>
  51. *> UPLO = 'U' or 'u' Only the upper triangular part of C
  52. *> is to be referenced.
  53. *>
  54. *> UPLO = 'L' or 'l' Only the lower triangular part of C
  55. *> is to be referenced.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] TRANS
  59. *> \verbatim
  60. *> TRANS is CHARACTER*1
  61. *> On entry, TRANS specifies the operation to be performed as
  62. *> follows:
  63. *>
  64. *> TRANS = 'N' or 'n' C := alpha*A*B**T + alpha*B*A**T +
  65. *> beta*C.
  66. *>
  67. *> TRANS = 'T' or 't' C := alpha*A**T*B + alpha*B**T*A +
  68. *> beta*C.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] N
  72. *> \verbatim
  73. *> N is INTEGER
  74. *> On entry, N specifies the order of the matrix C. N must be
  75. *> at least zero.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] K
  79. *> \verbatim
  80. *> K is INTEGER
  81. *> On entry with TRANS = 'N' or 'n', K specifies the number
  82. *> of columns of the matrices A and B, and on entry with
  83. *> TRANS = 'T' or 't', K specifies the number of rows of the
  84. *> matrices A and B. K must be at least zero.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] ALPHA
  88. *> \verbatim
  89. *> ALPHA is COMPLEX
  90. *> On entry, ALPHA specifies the scalar alpha.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] A
  94. *> \verbatim
  95. *> A is COMPLEX array, dimension ( LDA, ka ), where ka is
  96. *> k when TRANS = 'N' or 'n', and is n otherwise.
  97. *> Before entry with TRANS = 'N' or 'n', the leading n by k
  98. *> part of the array A must contain the matrix A, otherwise
  99. *> the leading k by n part of the array A must contain the
  100. *> matrix A.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDA
  104. *> \verbatim
  105. *> LDA is INTEGER
  106. *> On entry, LDA specifies the first dimension of A as declared
  107. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  108. *> then LDA must be at least max( 1, n ), otherwise LDA must
  109. *> be at least max( 1, k ).
  110. *> \endverbatim
  111. *>
  112. *> \param[in] B
  113. *> \verbatim
  114. *> B is COMPLEX array, dimension ( LDB, kb ), where kb is
  115. *> k when TRANS = 'N' or 'n', and is n otherwise.
  116. *> Before entry with TRANS = 'N' or 'n', the leading n by k
  117. *> part of the array B must contain the matrix B, otherwise
  118. *> the leading k by n part of the array B must contain the
  119. *> matrix B.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDB
  123. *> \verbatim
  124. *> LDB is INTEGER
  125. *> On entry, LDB specifies the first dimension of B as declared
  126. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  127. *> then LDB must be at least max( 1, n ), otherwise LDB must
  128. *> be at least max( 1, k ).
  129. *> \endverbatim
  130. *>
  131. *> \param[in] BETA
  132. *> \verbatim
  133. *> BETA is COMPLEX
  134. *> On entry, BETA specifies the scalar beta.
  135. *> \endverbatim
  136. *>
  137. *> \param[in,out] C
  138. *> \verbatim
  139. *> C is COMPLEX array, dimension ( LDC, N )
  140. *> Before entry with UPLO = 'U' or 'u', the leading n by n
  141. *> upper triangular part of the array C must contain the upper
  142. *> triangular part of the symmetric matrix and the strictly
  143. *> lower triangular part of C is not referenced. On exit, the
  144. *> upper triangular part of the array C is overwritten by the
  145. *> upper triangular part of the updated matrix.
  146. *> Before entry with UPLO = 'L' or 'l', the leading n by n
  147. *> lower triangular part of the array C must contain the lower
  148. *> triangular part of the symmetric matrix and the strictly
  149. *> upper triangular part of C is not referenced. On exit, the
  150. *> lower triangular part of the array C is overwritten by the
  151. *> lower triangular part of the updated matrix.
  152. *> \endverbatim
  153. *>
  154. *> \param[in] LDC
  155. *> \verbatim
  156. *> LDC is INTEGER
  157. *> On entry, LDC specifies the first dimension of C as declared
  158. *> in the calling (sub) program. LDC must be at least
  159. *> max( 1, n ).
  160. *> \endverbatim
  161. *
  162. * Authors:
  163. * ========
  164. *
  165. *> \author Univ. of Tennessee
  166. *> \author Univ. of California Berkeley
  167. *> \author Univ. of Colorado Denver
  168. *> \author NAG Ltd.
  169. *
  170. *> \date December 2016
  171. *
  172. *> \ingroup complex_blas_level3
  173. *
  174. *> \par Further Details:
  175. * =====================
  176. *>
  177. *> \verbatim
  178. *>
  179. *> Level 3 Blas routine.
  180. *>
  181. *> -- Written on 8-February-1989.
  182. *> Jack Dongarra, Argonne National Laboratory.
  183. *> Iain Duff, AERE Harwell.
  184. *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
  185. *> Sven Hammarling, Numerical Algorithms Group Ltd.
  186. *> \endverbatim
  187. *>
  188. * =====================================================================
  189. SUBROUTINE CSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  190. *
  191. * -- Reference BLAS level3 routine (version 3.7.0) --
  192. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  193. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  194. * December 2016
  195. *
  196. * .. Scalar Arguments ..
  197. COMPLEX ALPHA,BETA
  198. INTEGER K,LDA,LDB,LDC,N
  199. CHARACTER TRANS,UPLO
  200. * ..
  201. * .. Array Arguments ..
  202. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
  203. * ..
  204. *
  205. * =====================================================================
  206. *
  207. * .. External Functions ..
  208. LOGICAL LSAME
  209. EXTERNAL LSAME
  210. * ..
  211. * .. External Subroutines ..
  212. EXTERNAL XERBLA
  213. * ..
  214. * .. Intrinsic Functions ..
  215. INTRINSIC MAX
  216. * ..
  217. * .. Local Scalars ..
  218. COMPLEX TEMP1,TEMP2
  219. INTEGER I,INFO,J,L,NROWA
  220. LOGICAL UPPER
  221. * ..
  222. * .. Parameters ..
  223. COMPLEX ONE
  224. PARAMETER (ONE= (1.0E+0,0.0E+0))
  225. COMPLEX ZERO
  226. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  227. * ..
  228. *
  229. * Test the input parameters.
  230. *
  231. IF (LSAME(TRANS,'N')) THEN
  232. NROWA = N
  233. ELSE
  234. NROWA = K
  235. END IF
  236. UPPER = LSAME(UPLO,'U')
  237. *
  238. INFO = 0
  239. IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
  240. INFO = 1
  241. ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
  242. + (.NOT.LSAME(TRANS,'T'))) THEN
  243. INFO = 2
  244. ELSE IF (N.LT.0) THEN
  245. INFO = 3
  246. ELSE IF (K.LT.0) THEN
  247. INFO = 4
  248. ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  249. INFO = 7
  250. ELSE IF (LDB.LT.MAX(1,NROWA)) THEN
  251. INFO = 9
  252. ELSE IF (LDC.LT.MAX(1,N)) THEN
  253. INFO = 12
  254. END IF
  255. IF (INFO.NE.0) THEN
  256. CALL XERBLA('CSYR2K',INFO)
  257. RETURN
  258. END IF
  259. *
  260. * Quick return if possible.
  261. *
  262. IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
  263. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
  264. *
  265. * And when alpha.eq.zero.
  266. *
  267. IF (ALPHA.EQ.ZERO) THEN
  268. IF (UPPER) THEN
  269. IF (BETA.EQ.ZERO) THEN
  270. DO 20 J = 1,N
  271. DO 10 I = 1,J
  272. C(I,J) = ZERO
  273. 10 CONTINUE
  274. 20 CONTINUE
  275. ELSE
  276. DO 40 J = 1,N
  277. DO 30 I = 1,J
  278. C(I,J) = BETA*C(I,J)
  279. 30 CONTINUE
  280. 40 CONTINUE
  281. END IF
  282. ELSE
  283. IF (BETA.EQ.ZERO) THEN
  284. DO 60 J = 1,N
  285. DO 50 I = J,N
  286. C(I,J) = ZERO
  287. 50 CONTINUE
  288. 60 CONTINUE
  289. ELSE
  290. DO 80 J = 1,N
  291. DO 70 I = J,N
  292. C(I,J) = BETA*C(I,J)
  293. 70 CONTINUE
  294. 80 CONTINUE
  295. END IF
  296. END IF
  297. RETURN
  298. END IF
  299. *
  300. * Start the operations.
  301. *
  302. IF (LSAME(TRANS,'N')) THEN
  303. *
  304. * Form C := alpha*A*B**T + alpha*B*A**T + C.
  305. *
  306. IF (UPPER) THEN
  307. DO 130 J = 1,N
  308. IF (BETA.EQ.ZERO) THEN
  309. DO 90 I = 1,J
  310. C(I,J) = ZERO
  311. 90 CONTINUE
  312. ELSE IF (BETA.NE.ONE) THEN
  313. DO 100 I = 1,J
  314. C(I,J) = BETA*C(I,J)
  315. 100 CONTINUE
  316. END IF
  317. DO 120 L = 1,K
  318. IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
  319. TEMP1 = ALPHA*B(J,L)
  320. TEMP2 = ALPHA*A(J,L)
  321. DO 110 I = 1,J
  322. C(I,J) = C(I,J) + A(I,L)*TEMP1 +
  323. + B(I,L)*TEMP2
  324. 110 CONTINUE
  325. END IF
  326. 120 CONTINUE
  327. 130 CONTINUE
  328. ELSE
  329. DO 180 J = 1,N
  330. IF (BETA.EQ.ZERO) THEN
  331. DO 140 I = J,N
  332. C(I,J) = ZERO
  333. 140 CONTINUE
  334. ELSE IF (BETA.NE.ONE) THEN
  335. DO 150 I = J,N
  336. C(I,J) = BETA*C(I,J)
  337. 150 CONTINUE
  338. END IF
  339. DO 170 L = 1,K
  340. IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
  341. TEMP1 = ALPHA*B(J,L)
  342. TEMP2 = ALPHA*A(J,L)
  343. DO 160 I = J,N
  344. C(I,J) = C(I,J) + A(I,L)*TEMP1 +
  345. + B(I,L)*TEMP2
  346. 160 CONTINUE
  347. END IF
  348. 170 CONTINUE
  349. 180 CONTINUE
  350. END IF
  351. ELSE
  352. *
  353. * Form C := alpha*A**T*B + alpha*B**T*A + C.
  354. *
  355. IF (UPPER) THEN
  356. DO 210 J = 1,N
  357. DO 200 I = 1,J
  358. TEMP1 = ZERO
  359. TEMP2 = ZERO
  360. DO 190 L = 1,K
  361. TEMP1 = TEMP1 + A(L,I)*B(L,J)
  362. TEMP2 = TEMP2 + B(L,I)*A(L,J)
  363. 190 CONTINUE
  364. IF (BETA.EQ.ZERO) THEN
  365. C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2
  366. ELSE
  367. C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
  368. + ALPHA*TEMP2
  369. END IF
  370. 200 CONTINUE
  371. 210 CONTINUE
  372. ELSE
  373. DO 240 J = 1,N
  374. DO 230 I = J,N
  375. TEMP1 = ZERO
  376. TEMP2 = ZERO
  377. DO 220 L = 1,K
  378. TEMP1 = TEMP1 + A(L,I)*B(L,J)
  379. TEMP2 = TEMP2 + B(L,I)*A(L,J)
  380. 220 CONTINUE
  381. IF (BETA.EQ.ZERO) THEN
  382. C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2
  383. ELSE
  384. C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
  385. + ALPHA*TEMP2
  386. END IF
  387. 230 CONTINUE
  388. 240 CONTINUE
  389. END IF
  390. END IF
  391. *
  392. RETURN
  393. *
  394. * End of CSYR2K.
  395. *
  396. END