You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrti2.f 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. *> \brief \b DTRTI2 computes the inverse of a triangular matrix (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DTRTI2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrti2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrti2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrti2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIAG, UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DTRTI2 computes the inverse of a real upper or lower triangular
  38. *> matrix.
  39. *>
  40. *> This is the Level 2 BLAS version of the algorithm.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the matrix A is upper or lower triangular.
  50. *> = 'U': Upper triangular
  51. *> = 'L': Lower triangular
  52. *> \endverbatim
  53. *>
  54. *> \param[in] DIAG
  55. *> \verbatim
  56. *> DIAG is CHARACTER*1
  57. *> Specifies whether or not the matrix A is unit triangular.
  58. *> = 'N': Non-unit triangular
  59. *> = 'U': Unit triangular
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  71. *> On entry, the triangular matrix A. If UPLO = 'U', the
  72. *> leading n by n upper triangular part of the array A contains
  73. *> the upper triangular matrix, and the strictly lower
  74. *> triangular part of A is not referenced. If UPLO = 'L', the
  75. *> leading n by n lower triangular part of the array A contains
  76. *> the lower triangular matrix, and the strictly upper
  77. *> triangular part of A is not referenced. If DIAG = 'U', the
  78. *> diagonal elements of A are also not referenced and are
  79. *> assumed to be 1.
  80. *>
  81. *> On exit, the (triangular) inverse of the original matrix, in
  82. *> the same storage format.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] LDA
  86. *> \verbatim
  87. *> LDA is INTEGER
  88. *> The leading dimension of the array A. LDA >= max(1,N).
  89. *> \endverbatim
  90. *>
  91. *> \param[out] INFO
  92. *> \verbatim
  93. *> INFO is INTEGER
  94. *> = 0: successful exit
  95. *> < 0: if INFO = -k, the k-th argument had an illegal value
  96. *> \endverbatim
  97. *
  98. * Authors:
  99. * ========
  100. *
  101. *> \author Univ. of Tennessee
  102. *> \author Univ. of California Berkeley
  103. *> \author Univ. of Colorado Denver
  104. *> \author NAG Ltd.
  105. *
  106. *> \ingroup doubleOTHERcomputational
  107. *
  108. * =====================================================================
  109. SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
  110. *
  111. * -- LAPACK computational routine --
  112. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  113. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  114. *
  115. * .. Scalar Arguments ..
  116. CHARACTER DIAG, UPLO
  117. INTEGER INFO, LDA, N
  118. * ..
  119. * .. Array Arguments ..
  120. DOUBLE PRECISION A( LDA, * )
  121. * ..
  122. *
  123. * =====================================================================
  124. *
  125. * .. Parameters ..
  126. DOUBLE PRECISION ONE
  127. PARAMETER ( ONE = 1.0D+0 )
  128. * ..
  129. * .. Local Scalars ..
  130. LOGICAL NOUNIT, UPPER
  131. INTEGER J
  132. DOUBLE PRECISION AJJ
  133. * ..
  134. * .. External Functions ..
  135. LOGICAL LSAME
  136. EXTERNAL LSAME
  137. * ..
  138. * .. External Subroutines ..
  139. EXTERNAL DSCAL, DTRMV, XERBLA
  140. * ..
  141. * .. Intrinsic Functions ..
  142. INTRINSIC MAX
  143. * ..
  144. * .. Executable Statements ..
  145. *
  146. * Test the input parameters.
  147. *
  148. INFO = 0
  149. UPPER = LSAME( UPLO, 'U' )
  150. NOUNIT = LSAME( DIAG, 'N' )
  151. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  152. INFO = -1
  153. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  154. INFO = -2
  155. ELSE IF( N.LT.0 ) THEN
  156. INFO = -3
  157. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  158. INFO = -5
  159. END IF
  160. IF( INFO.NE.0 ) THEN
  161. CALL XERBLA( 'DTRTI2', -INFO )
  162. RETURN
  163. END IF
  164. *
  165. IF( UPPER ) THEN
  166. *
  167. * Compute inverse of upper triangular matrix.
  168. *
  169. DO 10 J = 1, N
  170. IF( NOUNIT ) THEN
  171. A( J, J ) = ONE / A( J, J )
  172. AJJ = -A( J, J )
  173. ELSE
  174. AJJ = -ONE
  175. END IF
  176. *
  177. * Compute elements 1:j-1 of j-th column.
  178. *
  179. CALL DTRMV( 'Upper', 'No transpose', DIAG, J-1, A, LDA,
  180. $ A( 1, J ), 1 )
  181. CALL DSCAL( J-1, AJJ, A( 1, J ), 1 )
  182. 10 CONTINUE
  183. ELSE
  184. *
  185. * Compute inverse of lower triangular matrix.
  186. *
  187. DO 20 J = N, 1, -1
  188. IF( NOUNIT ) THEN
  189. A( J, J ) = ONE / A( J, J )
  190. AJJ = -A( J, J )
  191. ELSE
  192. AJJ = -ONE
  193. END IF
  194. IF( J.LT.N ) THEN
  195. *
  196. * Compute elements j+1:n of j-th column.
  197. *
  198. CALL DTRMV( 'Lower', 'No transpose', DIAG, N-J,
  199. $ A( J+1, J+1 ), LDA, A( J+1, J ), 1 )
  200. CALL DSCAL( N-J, AJJ, A( J+1, J ), 1 )
  201. END IF
  202. 20 CONTINUE
  203. END IF
  204. *
  205. RETURN
  206. *
  207. * End of DTRTI2
  208. *
  209. END