|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- SUBROUTINE ZGETF2F( M, N, A, LDA, IPIV, INFO )
- *
- * -- LAPACK routine (version 3.0) --
- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
- * Courant Institute, Argonne National Lab, and Rice University
- * September 30, 1994
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX*16 A( LDA, * )
- * ..
- *
- * Purpose
- * =======
- *
- * ZGETF2 computes an LU factorization of a general m-by-n matrix A
- * using partial pivoting with row interchanges.
- *
- * The factorization has the form
- * A = P * L * U
- * where P is a permutation matrix, L is lower triangular with unit
- * diagonal elements (lower trapezoidal if m > n), and U is upper
- * triangular (upper trapezoidal if m < n).
- *
- * This is the right-looking Level 2 BLAS version of the algorithm.
- *
- * Arguments
- * =========
- *
- * M (input) INTEGER
- * The number of rows of the matrix A. M >= 0.
- *
- * N (input) INTEGER
- * The number of columns of the matrix A. N >= 0.
- *
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
- * On entry, the m by n matrix to be factored.
- * On exit, the factors L and U from the factorization
- * A = P*L*U; the unit diagonal elements of L are not stored.
- *
- * LDA (input) INTEGER
- * The leading dimension of the array A. LDA >= max(1,M).
- *
- * IPIV (output) INTEGER array, dimension (min(M,N))
- * The pivot indices; for 1 <= i <= min(M,N), row i of the
- * matrix was interchanged with row IPIV(i).
- *
- * INFO (output) INTEGER
- * = 0: successful exit
- * < 0: if INFO = -k, the k-th argument had an illegal value
- * > 0: if INFO = k, U(k,k) is exactly zero. The factorization
- * has been completed, but the factor U is exactly
- * singular, and division by zero will occur if it is used
- * to solve a system of equations.
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE, ZERO
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
- $ ZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER J, JP
- * ..
- * .. External Functions ..
- INTEGER IZAMAX
- EXTERNAL IZAMAX
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZGERU, ZSCAL, ZSWAP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGETF2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- DO 10 J = 1, MIN( M, N )
- *
- * Find pivot and test for singularity.
- *
- JP = J - 1 + IZAMAX( M-J+1, A( J, J ), 1 )
- IPIV( J ) = JP
- IF( A( JP, J ).NE.ZERO ) THEN
- *
- * Apply the interchange to columns 1:N.
- *
- IF( JP.NE.J )
- $ CALL ZSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
- *
- * Compute elements J+1:M of J-th column.
- *
- IF( J.LT.M )
- $ CALL ZSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
- *
- ELSE IF( INFO.EQ.0 ) THEN
- *
- INFO = J
- END IF
- *
- IF( J.LT.MIN( M, N ) ) THEN
- *
- * Update trailing submatrix.
- *
- CALL ZGERU( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ),
- $ LDA, A( J+1, J+1 ), LDA )
- END IF
- 10 CONTINUE
- RETURN
- *
- * End of ZGETF2
- *
- END
|