You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stbsvf.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. SUBROUTINE STBSVF(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
  2. * .. Scalar Arguments ..
  3. INTEGER INCX,K,LDA,N
  4. CHARACTER DIAG,TRANS,UPLO
  5. * ..
  6. * .. Array Arguments ..
  7. REAL A(LDA,*),X(*)
  8. * ..
  9. *
  10. * Purpose
  11. * =======
  12. *
  13. * STBSV solves one of the systems of equations
  14. *
  15. * A*x = b, or A'*x = b,
  16. *
  17. * where b and x are n element vectors and A is an n by n unit, or
  18. * non-unit, upper or lower triangular band matrix, with ( k + 1 )
  19. * diagonals.
  20. *
  21. * No test for singularity or near-singularity is included in this
  22. * routine. Such tests must be performed before calling this routine.
  23. *
  24. * Arguments
  25. * ==========
  26. *
  27. * UPLO - CHARACTER*1.
  28. * On entry, UPLO specifies whether the matrix is an upper or
  29. * lower triangular matrix as follows:
  30. *
  31. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  32. *
  33. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  34. *
  35. * Unchanged on exit.
  36. *
  37. * TRANS - CHARACTER*1.
  38. * On entry, TRANS specifies the equations to be solved as
  39. * follows:
  40. *
  41. * TRANS = 'N' or 'n' A*x = b.
  42. *
  43. * TRANS = 'T' or 't' A'*x = b.
  44. *
  45. * TRANS = 'C' or 'c' A'*x = b.
  46. *
  47. * Unchanged on exit.
  48. *
  49. * DIAG - CHARACTER*1.
  50. * On entry, DIAG specifies whether or not A is unit
  51. * triangular as follows:
  52. *
  53. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  54. *
  55. * DIAG = 'N' or 'n' A is not assumed to be unit
  56. * triangular.
  57. *
  58. * Unchanged on exit.
  59. *
  60. * N - INTEGER.
  61. * On entry, N specifies the order of the matrix A.
  62. * N must be at least zero.
  63. * Unchanged on exit.
  64. *
  65. * K - INTEGER.
  66. * On entry with UPLO = 'U' or 'u', K specifies the number of
  67. * super-diagonals of the matrix A.
  68. * On entry with UPLO = 'L' or 'l', K specifies the number of
  69. * sub-diagonals of the matrix A.
  70. * K must satisfy 0 .le. K.
  71. * Unchanged on exit.
  72. *
  73. * A - REAL array of DIMENSION ( LDA, n ).
  74. * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  75. * by n part of the array A must contain the upper triangular
  76. * band part of the matrix of coefficients, supplied column by
  77. * column, with the leading diagonal of the matrix in row
  78. * ( k + 1 ) of the array, the first super-diagonal starting at
  79. * position 2 in row k, and so on. The top left k by k triangle
  80. * of the array A is not referenced.
  81. * The following program segment will transfer an upper
  82. * triangular band matrix from conventional full matrix storage
  83. * to band storage:
  84. *
  85. * DO 20, J = 1, N
  86. * M = K + 1 - J
  87. * DO 10, I = MAX( 1, J - K ), J
  88. * A( M + I, J ) = matrix( I, J )
  89. * 10 CONTINUE
  90. * 20 CONTINUE
  91. *
  92. * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  93. * by n part of the array A must contain the lower triangular
  94. * band part of the matrix of coefficients, supplied column by
  95. * column, with the leading diagonal of the matrix in row 1 of
  96. * the array, the first sub-diagonal starting at position 1 in
  97. * row 2, and so on. The bottom right k by k triangle of the
  98. * array A is not referenced.
  99. * The following program segment will transfer a lower
  100. * triangular band matrix from conventional full matrix storage
  101. * to band storage:
  102. *
  103. * DO 20, J = 1, N
  104. * M = 1 - J
  105. * DO 10, I = J, MIN( N, J + K )
  106. * A( M + I, J ) = matrix( I, J )
  107. * 10 CONTINUE
  108. * 20 CONTINUE
  109. *
  110. * Note that when DIAG = 'U' or 'u' the elements of the array A
  111. * corresponding to the diagonal elements of the matrix are not
  112. * referenced, but are assumed to be unity.
  113. * Unchanged on exit.
  114. *
  115. * LDA - INTEGER.
  116. * On entry, LDA specifies the first dimension of A as declared
  117. * in the calling (sub) program. LDA must be at least
  118. * ( k + 1 ).
  119. * Unchanged on exit.
  120. *
  121. * X - REAL array of dimension at least
  122. * ( 1 + ( n - 1 )*abs( INCX ) ).
  123. * Before entry, the incremented array X must contain the n
  124. * element right-hand side vector b. On exit, X is overwritten
  125. * with the solution vector x.
  126. *
  127. * INCX - INTEGER.
  128. * On entry, INCX specifies the increment for the elements of
  129. * X. INCX must not be zero.
  130. * Unchanged on exit.
  131. *
  132. *
  133. * Level 2 Blas routine.
  134. *
  135. * -- Written on 22-October-1986.
  136. * Jack Dongarra, Argonne National Lab.
  137. * Jeremy Du Croz, Nag Central Office.
  138. * Sven Hammarling, Nag Central Office.
  139. * Richard Hanson, Sandia National Labs.
  140. *
  141. *
  142. * .. Parameters ..
  143. REAL ZERO
  144. PARAMETER (ZERO=0.0E+0)
  145. * ..
  146. * .. Local Scalars ..
  147. REAL TEMP
  148. INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
  149. LOGICAL NOUNIT
  150. * ..
  151. * .. External Functions ..
  152. LOGICAL LSAME
  153. EXTERNAL LSAME
  154. * ..
  155. * .. External Subroutines ..
  156. EXTERNAL XERBLA
  157. * ..
  158. * .. Intrinsic Functions ..
  159. INTRINSIC MAX,MIN
  160. * ..
  161. *
  162. * Test the input parameters.
  163. *
  164. INFO = 0
  165. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  166. INFO = 1
  167. ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  168. + .NOT.LSAME(TRANS,'C')) THEN
  169. INFO = 2
  170. ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  171. INFO = 3
  172. ELSE IF (N.LT.0) THEN
  173. INFO = 4
  174. ELSE IF (K.LT.0) THEN
  175. INFO = 5
  176. ELSE IF (LDA.LT. (K+1)) THEN
  177. INFO = 7
  178. ELSE IF (INCX.EQ.0) THEN
  179. INFO = 9
  180. END IF
  181. IF (INFO.NE.0) THEN
  182. CALL XERBLA('STBSV ',INFO)
  183. RETURN
  184. END IF
  185. *
  186. * Quick return if possible.
  187. *
  188. IF (N.EQ.0) RETURN
  189. *
  190. NOUNIT = LSAME(DIAG,'N')
  191. *
  192. * Set up the start point in X if the increment is not unity. This
  193. * will be ( N - 1 )*INCX too small for descending loops.
  194. *
  195. IF (INCX.LE.0) THEN
  196. KX = 1 - (N-1)*INCX
  197. ELSE IF (INCX.NE.1) THEN
  198. KX = 1
  199. END IF
  200. *
  201. * Start the operations. In this version the elements of A are
  202. * accessed by sequentially with one pass through A.
  203. *
  204. IF (LSAME(TRANS,'N')) THEN
  205. *
  206. * Form x := inv( A )*x.
  207. *
  208. IF (LSAME(UPLO,'U')) THEN
  209. KPLUS1 = K + 1
  210. IF (INCX.EQ.1) THEN
  211. DO 20 J = N,1,-1
  212. IF (X(J).NE.ZERO) THEN
  213. L = KPLUS1 - J
  214. IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
  215. TEMP = X(J)
  216. DO 10 I = J - 1,MAX(1,J-K),-1
  217. X(I) = X(I) - TEMP*A(L+I,J)
  218. 10 CONTINUE
  219. END IF
  220. 20 CONTINUE
  221. ELSE
  222. KX = KX + (N-1)*INCX
  223. JX = KX
  224. DO 40 J = N,1,-1
  225. KX = KX - INCX
  226. IF (X(JX).NE.ZERO) THEN
  227. IX = KX
  228. L = KPLUS1 - J
  229. IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
  230. TEMP = X(JX)
  231. DO 30 I = J - 1,MAX(1,J-K),-1
  232. X(IX) = X(IX) - TEMP*A(L+I,J)
  233. IX = IX - INCX
  234. 30 CONTINUE
  235. END IF
  236. JX = JX - INCX
  237. 40 CONTINUE
  238. END IF
  239. ELSE
  240. IF (INCX.EQ.1) THEN
  241. DO 60 J = 1,N
  242. IF (X(J).NE.ZERO) THEN
  243. L = 1 - J
  244. IF (NOUNIT) X(J) = X(J)/A(1,J)
  245. TEMP = X(J)
  246. DO 50 I = J + 1,MIN(N,J+K)
  247. X(I) = X(I) - TEMP*A(L+I,J)
  248. 50 CONTINUE
  249. END IF
  250. 60 CONTINUE
  251. ELSE
  252. JX = KX
  253. DO 80 J = 1,N
  254. KX = KX + INCX
  255. IF (X(JX).NE.ZERO) THEN
  256. IX = KX
  257. L = 1 - J
  258. IF (NOUNIT) X(JX) = X(JX)/A(1,J)
  259. TEMP = X(JX)
  260. DO 70 I = J + 1,MIN(N,J+K)
  261. X(IX) = X(IX) - TEMP*A(L+I,J)
  262. IX = IX + INCX
  263. 70 CONTINUE
  264. END IF
  265. JX = JX + INCX
  266. 80 CONTINUE
  267. END IF
  268. END IF
  269. ELSE
  270. *
  271. * Form x := inv( A')*x.
  272. *
  273. IF (LSAME(UPLO,'U')) THEN
  274. KPLUS1 = K + 1
  275. IF (INCX.EQ.1) THEN
  276. DO 100 J = 1,N
  277. TEMP = X(J)
  278. L = KPLUS1 - J
  279. DO 90 I = MAX(1,J-K),J - 1
  280. TEMP = TEMP - A(L+I,J)*X(I)
  281. 90 CONTINUE
  282. IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
  283. X(J) = TEMP
  284. 100 CONTINUE
  285. ELSE
  286. JX = KX
  287. DO 120 J = 1,N
  288. TEMP = X(JX)
  289. IX = KX
  290. L = KPLUS1 - J
  291. DO 110 I = MAX(1,J-K),J - 1
  292. TEMP = TEMP - A(L+I,J)*X(IX)
  293. IX = IX + INCX
  294. 110 CONTINUE
  295. IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
  296. X(JX) = TEMP
  297. JX = JX + INCX
  298. IF (J.GT.K) KX = KX + INCX
  299. 120 CONTINUE
  300. END IF
  301. ELSE
  302. IF (INCX.EQ.1) THEN
  303. DO 140 J = N,1,-1
  304. TEMP = X(J)
  305. L = 1 - J
  306. DO 130 I = MIN(N,J+K),J + 1,-1
  307. TEMP = TEMP - A(L+I,J)*X(I)
  308. 130 CONTINUE
  309. IF (NOUNIT) TEMP = TEMP/A(1,J)
  310. X(J) = TEMP
  311. 140 CONTINUE
  312. ELSE
  313. KX = KX + (N-1)*INCX
  314. JX = KX
  315. DO 160 J = N,1,-1
  316. TEMP = X(JX)
  317. IX = KX
  318. L = 1 - J
  319. DO 150 I = MIN(N,J+K),J + 1,-1
  320. TEMP = TEMP - A(L+I,J)*X(IX)
  321. IX = IX - INCX
  322. 150 CONTINUE
  323. IF (NOUNIT) TEMP = TEMP/A(1,J)
  324. X(JX) = TEMP
  325. JX = JX - INCX
  326. IF ((N-J).GE.K) KX = KX - INCX
  327. 160 CONTINUE
  328. END IF
  329. END IF
  330. END IF
  331. *
  332. RETURN
  333. *
  334. * End of STBSV .
  335. *
  336. END