You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgetrsf.f 4.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. SUBROUTINE DGETRSF( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  2. *
  3. * -- LAPACK routine (version 3.0) --
  4. * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
  5. * Courant Institute, Argonne National Lab, and Rice University
  6. * March 31, 1993
  7. *
  8. * .. Scalar Arguments ..
  9. CHARACTER TRANS
  10. INTEGER INFO, LDA, LDB, N, NRHS
  11. * ..
  12. * .. Array Arguments ..
  13. INTEGER IPIV( * )
  14. DOUBLE PRECISION A( LDA, * ), B( LDB, * )
  15. * ..
  16. *
  17. * Purpose
  18. * =======
  19. *
  20. * DGETRS solves a system of linear equations
  21. * A * X = B or A' * X = B
  22. * with a general N-by-N matrix A using the LU factorization computed
  23. * by DGETRF.
  24. *
  25. * Arguments
  26. * =========
  27. *
  28. * TRANS (input) CHARACTER*1
  29. * Specifies the form of the system of equations:
  30. * = 'N': A * X = B (No transpose)
  31. * = 'T': A'* X = B (Transpose)
  32. * = 'C': A'* X = B (Conjugate transpose = Transpose)
  33. *
  34. * N (input) INTEGER
  35. * The order of the matrix A. N >= 0.
  36. *
  37. * NRHS (input) INTEGER
  38. * The number of right hand sides, i.e., the number of columns
  39. * of the matrix B. NRHS >= 0.
  40. *
  41. * A (input) DOUBLE PRECISION array, dimension (LDA,N)
  42. * The factors L and U from the factorization A = P*L*U
  43. * as computed by DGETRF.
  44. *
  45. * LDA (input) INTEGER
  46. * The leading dimension of the array A. LDA >= max(1,N).
  47. *
  48. * IPIV (input) INTEGER array, dimension (N)
  49. * The pivot indices from DGETRF; for 1<=i<=N, row i of the
  50. * matrix was interchanged with row IPIV(i).
  51. *
  52. * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
  53. * On entry, the right hand side matrix B.
  54. * On exit, the solution matrix X.
  55. *
  56. * LDB (input) INTEGER
  57. * The leading dimension of the array B. LDB >= max(1,N).
  58. *
  59. * INFO (output) INTEGER
  60. * = 0: successful exit
  61. * < 0: if INFO = -i, the i-th argument had an illegal value
  62. *
  63. * =====================================================================
  64. *
  65. * .. Parameters ..
  66. DOUBLE PRECISION ONE
  67. PARAMETER ( ONE = 1.0D+0 )
  68. * ..
  69. * .. Local Scalars ..
  70. LOGICAL NOTRAN
  71. * ..
  72. * .. External Functions ..
  73. LOGICAL LSAME
  74. EXTERNAL LSAME
  75. * ..
  76. * .. External Subroutines ..
  77. EXTERNAL DLASWP, DTRSM, XERBLA
  78. * ..
  79. * .. Intrinsic Functions ..
  80. INTRINSIC MAX
  81. * ..
  82. * .. Executable Statements ..
  83. *
  84. * Test the input parameters.
  85. *
  86. INFO = 0
  87. NOTRAN = LSAME( TRANS, 'N' )
  88. IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  89. $ LSAME( TRANS, 'C' ) ) THEN
  90. INFO = -1
  91. ELSE IF( N.LT.0 ) THEN
  92. INFO = -2
  93. ELSE IF( NRHS.LT.0 ) THEN
  94. INFO = -3
  95. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  96. INFO = -5
  97. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  98. INFO = -8
  99. END IF
  100. IF( INFO.NE.0 ) THEN
  101. CALL XERBLA( 'DGETRS', -INFO )
  102. RETURN
  103. END IF
  104. *
  105. * Quick return if possible
  106. *
  107. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  108. $ RETURN
  109. *
  110. IF( NOTRAN ) THEN
  111. *
  112. * Solve A * X = B.
  113. *
  114. * Apply row interchanges to the right hand sides.
  115. *
  116. CALL DLASWP( NRHS, B, LDB, 1, N, IPIV, 1 )
  117. *
  118. * Solve L*X = B, overwriting B with X.
  119. *
  120. CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,
  121. $ ONE, A, LDA, B, LDB )
  122. *
  123. * Solve U*X = B, overwriting B with X.
  124. *
  125. CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
  126. $ NRHS, ONE, A, LDA, B, LDB )
  127. ELSE
  128. *
  129. * Solve A' * X = B.
  130. *
  131. * Solve U'*X = B, overwriting B with X.
  132. *
  133. CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS,
  134. $ ONE, A, LDA, B, LDB )
  135. *
  136. * Solve L'*X = B, overwriting B with X.
  137. *
  138. CALL DTRSM( 'Left', 'Lower', 'Transpose', 'Unit', N, NRHS, ONE,
  139. $ A, LDA, B, LDB )
  140. *
  141. * Apply row interchanges to the solution vectors.
  142. *
  143. CALL DLASWP( NRHS, B, LDB, 1, N, IPIV, -1 )
  144. END IF
  145. *
  146. RETURN
  147. *
  148. * End of DGETRS
  149. *
  150. END