You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zunmrq.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. *> \brief \b ZUNMRQ
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZUNMRQ + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmrq.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmrq.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmrq.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZUNMRQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER INFO, K, LDA, LDC, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZUNMRQ overwrites the general complex M-by-N matrix C with
  39. *>
  40. *> SIDE = 'L' SIDE = 'R'
  41. *> TRANS = 'N': Q * C C * Q
  42. *> TRANS = 'C': Q**H * C C * Q**H
  43. *>
  44. *> where Q is a complex unitary matrix defined as the product of k
  45. *> elementary reflectors
  46. *>
  47. *> Q = H(1)**H H(2)**H . . . H(k)**H
  48. *>
  49. *> as returned by ZGERQF. Q is of order M if SIDE = 'L' and of order N
  50. *> if SIDE = 'R'.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] SIDE
  57. *> \verbatim
  58. *> SIDE is CHARACTER*1
  59. *> = 'L': apply Q or Q**H from the Left;
  60. *> = 'R': apply Q or Q**H from the Right.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] TRANS
  64. *> \verbatim
  65. *> TRANS is CHARACTER*1
  66. *> = 'N': No transpose, apply Q;
  67. *> = 'C': Conjugate transpose, apply Q**H.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] M
  71. *> \verbatim
  72. *> M is INTEGER
  73. *> The number of rows of the matrix C. M >= 0.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] N
  77. *> \verbatim
  78. *> N is INTEGER
  79. *> The number of columns of the matrix C. N >= 0.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] K
  83. *> \verbatim
  84. *> K is INTEGER
  85. *> The number of elementary reflectors whose product defines
  86. *> the matrix Q.
  87. *> If SIDE = 'L', M >= K >= 0;
  88. *> if SIDE = 'R', N >= K >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] A
  92. *> \verbatim
  93. *> A is COMPLEX*16 array, dimension
  94. *> (LDA,M) if SIDE = 'L',
  95. *> (LDA,N) if SIDE = 'R'
  96. *> The i-th row must contain the vector which defines the
  97. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  98. *> ZGERQF in the last k rows of its array argument A.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDA
  102. *> \verbatim
  103. *> LDA is INTEGER
  104. *> The leading dimension of the array A. LDA >= max(1,K).
  105. *> \endverbatim
  106. *>
  107. *> \param[in] TAU
  108. *> \verbatim
  109. *> TAU is COMPLEX*16 array, dimension (K)
  110. *> TAU(i) must contain the scalar factor of the elementary
  111. *> reflector H(i), as returned by ZGERQF.
  112. *> \endverbatim
  113. *>
  114. *> \param[in,out] C
  115. *> \verbatim
  116. *> C is COMPLEX*16 array, dimension (LDC,N)
  117. *> On entry, the M-by-N matrix C.
  118. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDC
  122. *> \verbatim
  123. *> LDC is INTEGER
  124. *> The leading dimension of the array C. LDC >= max(1,M).
  125. *> \endverbatim
  126. *>
  127. *> \param[out] WORK
  128. *> \verbatim
  129. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  130. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] LWORK
  134. *> \verbatim
  135. *> LWORK is INTEGER
  136. *> The dimension of the array WORK.
  137. *> If SIDE = 'L', LWORK >= max(1,N);
  138. *> if SIDE = 'R', LWORK >= max(1,M).
  139. *> For good performance, LWORK should generally be larger.
  140. *>
  141. *> If LWORK = -1, then a workspace query is assumed; the routine
  142. *> only calculates the optimal size of the WORK array, returns
  143. *> this value as the first entry of the WORK array, and no error
  144. *> message related to LWORK is issued by XERBLA.
  145. *> \endverbatim
  146. *>
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> < 0: if INFO = -i, the i-th argument had an illegal value
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \ingroup complex16OTHERcomputational
  163. *
  164. * =====================================================================
  165. SUBROUTINE ZUNMRQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  166. $ WORK, LWORK, INFO )
  167. *
  168. * -- LAPACK computational routine --
  169. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  170. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  171. *
  172. * .. Scalar Arguments ..
  173. CHARACTER SIDE, TRANS
  174. INTEGER INFO, K, LDA, LDC, LWORK, M, N
  175. * ..
  176. * .. Array Arguments ..
  177. COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  178. * ..
  179. *
  180. * =====================================================================
  181. *
  182. * .. Parameters ..
  183. INTEGER NBMAX, LDT, TSIZE
  184. PARAMETER ( NBMAX = 64, LDT = NBMAX+1,
  185. $ TSIZE = LDT*NBMAX )
  186. * ..
  187. * .. Local Scalars ..
  188. LOGICAL LEFT, LQUERY, NOTRAN
  189. CHARACTER TRANST
  190. INTEGER I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT,
  191. $ MI, NB, NBMIN, NI, NQ, NW
  192. * ..
  193. * .. External Functions ..
  194. LOGICAL LSAME
  195. INTEGER ILAENV
  196. EXTERNAL LSAME, ILAENV
  197. * ..
  198. * .. External Subroutines ..
  199. EXTERNAL XERBLA, ZLARFB, ZLARFT, ZUNMR2
  200. * ..
  201. * .. Intrinsic Functions ..
  202. INTRINSIC MAX, MIN
  203. * ..
  204. * .. Executable Statements ..
  205. *
  206. * Test the input arguments
  207. *
  208. INFO = 0
  209. LEFT = LSAME( SIDE, 'L' )
  210. NOTRAN = LSAME( TRANS, 'N' )
  211. LQUERY = ( LWORK.EQ.-1 )
  212. *
  213. * NQ is the order of Q and NW is the minimum dimension of WORK
  214. *
  215. IF( LEFT ) THEN
  216. NQ = M
  217. NW = MAX( 1, N )
  218. ELSE
  219. NQ = N
  220. NW = MAX( 1, M )
  221. END IF
  222. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  223. INFO = -1
  224. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  225. INFO = -2
  226. ELSE IF( M.LT.0 ) THEN
  227. INFO = -3
  228. ELSE IF( N.LT.0 ) THEN
  229. INFO = -4
  230. ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  231. INFO = -5
  232. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  233. INFO = -7
  234. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  235. INFO = -10
  236. ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  237. INFO = -12
  238. END IF
  239. *
  240. IF( INFO.EQ.0 ) THEN
  241. *
  242. * Compute the workspace requirements
  243. *
  244. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  245. LWKOPT = 1
  246. ELSE
  247. NB = MIN( NBMAX, ILAENV( 1, 'ZUNMRQ', SIDE // TRANS, M, N,
  248. $ K, -1 ) )
  249. LWKOPT = NW*NB + TSIZE
  250. END IF
  251. WORK( 1 ) = LWKOPT
  252. END IF
  253. *
  254. IF( INFO.NE.0 ) THEN
  255. CALL XERBLA( 'ZUNMRQ', -INFO )
  256. RETURN
  257. ELSE IF( LQUERY ) THEN
  258. RETURN
  259. END IF
  260. *
  261. * Quick return if possible
  262. *
  263. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  264. RETURN
  265. END IF
  266. *
  267. NBMIN = 2
  268. LDWORK = NW
  269. IF( NB.GT.1 .AND. NB.LT.K ) THEN
  270. IF( LWORK.LT.LWKOPT ) THEN
  271. NB = (LWORK-TSIZE) / LDWORK
  272. NBMIN = MAX( 2, ILAENV( 2, 'ZUNMRQ', SIDE // TRANS, M, N, K,
  273. $ -1 ) )
  274. END IF
  275. END IF
  276. *
  277. IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
  278. *
  279. * Use unblocked code
  280. *
  281. CALL ZUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
  282. $ IINFO )
  283. ELSE
  284. *
  285. * Use blocked code
  286. *
  287. IWT = 1 + NW*NB
  288. IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
  289. $ ( .NOT.LEFT .AND. NOTRAN ) ) THEN
  290. I1 = 1
  291. I2 = K
  292. I3 = NB
  293. ELSE
  294. I1 = ( ( K-1 ) / NB )*NB + 1
  295. I2 = 1
  296. I3 = -NB
  297. END IF
  298. *
  299. IF( LEFT ) THEN
  300. NI = N
  301. ELSE
  302. MI = M
  303. END IF
  304. *
  305. IF( NOTRAN ) THEN
  306. TRANST = 'C'
  307. ELSE
  308. TRANST = 'N'
  309. END IF
  310. *
  311. DO 10 I = I1, I2, I3
  312. IB = MIN( NB, K-I+1 )
  313. *
  314. * Form the triangular factor of the block reflector
  315. * H = H(i+ib-1) . . . H(i+1) H(i)
  316. *
  317. CALL ZLARFT( 'Backward', 'Rowwise', NQ-K+I+IB-1, IB,
  318. $ A( I, 1 ), LDA, TAU( I ), WORK( IWT ), LDT )
  319. IF( LEFT ) THEN
  320. *
  321. * H or H**H is applied to C(1:m-k+i+ib-1,1:n)
  322. *
  323. MI = M - K + I + IB - 1
  324. ELSE
  325. *
  326. * H or H**H is applied to C(1:m,1:n-k+i+ib-1)
  327. *
  328. NI = N - K + I + IB - 1
  329. END IF
  330. *
  331. * Apply H or H**H
  332. *
  333. CALL ZLARFB( SIDE, TRANST, 'Backward', 'Rowwise', MI, NI,
  334. $ IB, A( I, 1 ), LDA, WORK( IWT ), LDT, C, LDC,
  335. $ WORK, LDWORK )
  336. 10 CONTINUE
  337. END IF
  338. WORK( 1 ) = LWKOPT
  339. RETURN
  340. *
  341. * End of ZUNMRQ
  342. *
  343. END