You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zstein.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. *> \brief \b ZSTEIN
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSTEIN + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstein.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstein.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstein.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
  22. * IWORK, IFAIL, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LDZ, M, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
  29. * $ IWORK( * )
  30. * DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * )
  31. * COMPLEX*16 Z( LDZ, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZSTEIN computes the eigenvectors of a real symmetric tridiagonal
  41. *> matrix T corresponding to specified eigenvalues, using inverse
  42. *> iteration.
  43. *>
  44. *> The maximum number of iterations allowed for each eigenvector is
  45. *> specified by an internal parameter MAXITS (currently set to 5).
  46. *>
  47. *> Although the eigenvectors are real, they are stored in a complex
  48. *> array, which may be passed to ZUNMTR or ZUPMTR for back
  49. *> transformation to the eigenvectors of a complex Hermitian matrix
  50. *> which was reduced to tridiagonal form.
  51. *>
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] D
  64. *> \verbatim
  65. *> D is DOUBLE PRECISION array, dimension (N)
  66. *> The n diagonal elements of the tridiagonal matrix T.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] E
  70. *> \verbatim
  71. *> E is DOUBLE PRECISION array, dimension (N-1)
  72. *> The (n-1) subdiagonal elements of the tridiagonal matrix
  73. *> T, stored in elements 1 to N-1.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] M
  77. *> \verbatim
  78. *> M is INTEGER
  79. *> The number of eigenvectors to be found. 0 <= M <= N.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] W
  83. *> \verbatim
  84. *> W is DOUBLE PRECISION array, dimension (N)
  85. *> The first M elements of W contain the eigenvalues for
  86. *> which eigenvectors are to be computed. The eigenvalues
  87. *> should be grouped by split-off block and ordered from
  88. *> smallest to largest within the block. ( The output array
  89. *> W from DSTEBZ with ORDER = 'B' is expected here. )
  90. *> \endverbatim
  91. *>
  92. *> \param[in] IBLOCK
  93. *> \verbatim
  94. *> IBLOCK is INTEGER array, dimension (N)
  95. *> The submatrix indices associated with the corresponding
  96. *> eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
  97. *> the first submatrix from the top, =2 if W(i) belongs to
  98. *> the second submatrix, etc. ( The output array IBLOCK
  99. *> from DSTEBZ is expected here. )
  100. *> \endverbatim
  101. *>
  102. *> \param[in] ISPLIT
  103. *> \verbatim
  104. *> ISPLIT is INTEGER array, dimension (N)
  105. *> The splitting points, at which T breaks up into submatrices.
  106. *> The first submatrix consists of rows/columns 1 to
  107. *> ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
  108. *> through ISPLIT( 2 ), etc.
  109. *> ( The output array ISPLIT from DSTEBZ is expected here. )
  110. *> \endverbatim
  111. *>
  112. *> \param[out] Z
  113. *> \verbatim
  114. *> Z is COMPLEX*16 array, dimension (LDZ, M)
  115. *> The computed eigenvectors. The eigenvector associated
  116. *> with the eigenvalue W(i) is stored in the i-th column of
  117. *> Z. Any vector which fails to converge is set to its current
  118. *> iterate after MAXITS iterations.
  119. *> The imaginary parts of the eigenvectors are set to zero.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDZ
  123. *> \verbatim
  124. *> LDZ is INTEGER
  125. *> The leading dimension of the array Z. LDZ >= max(1,N).
  126. *> \endverbatim
  127. *>
  128. *> \param[out] WORK
  129. *> \verbatim
  130. *> WORK is DOUBLE PRECISION array, dimension (5*N)
  131. *> \endverbatim
  132. *>
  133. *> \param[out] IWORK
  134. *> \verbatim
  135. *> IWORK is INTEGER array, dimension (N)
  136. *> \endverbatim
  137. *>
  138. *> \param[out] IFAIL
  139. *> \verbatim
  140. *> IFAIL is INTEGER array, dimension (M)
  141. *> On normal exit, all elements of IFAIL are zero.
  142. *> If one or more eigenvectors fail to converge after
  143. *> MAXITS iterations, then their indices are stored in
  144. *> array IFAIL.
  145. *> \endverbatim
  146. *>
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> < 0: if INFO = -i, the i-th argument had an illegal value
  152. *> > 0: if INFO = i, then i eigenvectors failed to converge
  153. *> in MAXITS iterations. Their indices are stored in
  154. *> array IFAIL.
  155. *> \endverbatim
  156. *
  157. *> \par Internal Parameters:
  158. * =========================
  159. *>
  160. *> \verbatim
  161. *> MAXITS INTEGER, default = 5
  162. *> The maximum number of iterations performed.
  163. *>
  164. *> EXTRA INTEGER, default = 2
  165. *> The number of iterations performed after norm growth
  166. *> criterion is satisfied, should be at least 1.
  167. *> \endverbatim
  168. *
  169. * Authors:
  170. * ========
  171. *
  172. *> \author Univ. of Tennessee
  173. *> \author Univ. of California Berkeley
  174. *> \author Univ. of Colorado Denver
  175. *> \author NAG Ltd.
  176. *
  177. *> \ingroup complex16OTHERcomputational
  178. *
  179. * =====================================================================
  180. SUBROUTINE ZSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
  181. $ IWORK, IFAIL, INFO )
  182. *
  183. * -- LAPACK computational routine --
  184. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  185. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  186. *
  187. * .. Scalar Arguments ..
  188. INTEGER INFO, LDZ, M, N
  189. * ..
  190. * .. Array Arguments ..
  191. INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
  192. $ IWORK( * )
  193. DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * )
  194. COMPLEX*16 Z( LDZ, * )
  195. * ..
  196. *
  197. * =====================================================================
  198. *
  199. * .. Parameters ..
  200. COMPLEX*16 CZERO, CONE
  201. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  202. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  203. DOUBLE PRECISION ZERO, ONE, TEN, ODM3, ODM1
  204. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1,
  205. $ ODM3 = 1.0D-3, ODM1 = 1.0D-1 )
  206. INTEGER MAXITS, EXTRA
  207. PARAMETER ( MAXITS = 5, EXTRA = 2 )
  208. * ..
  209. * .. Local Scalars ..
  210. INTEGER B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1,
  211. $ INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1,
  212. $ JBLK, JMAX, JR, NBLK, NRMCHK
  213. DOUBLE PRECISION DTPCRT, EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL,
  214. $ SCL, SEP, TOL, XJ, XJM, ZTR
  215. * ..
  216. * .. Local Arrays ..
  217. INTEGER ISEED( 4 )
  218. * ..
  219. * .. External Functions ..
  220. INTEGER IDAMAX
  221. DOUBLE PRECISION DLAMCH, DNRM2
  222. EXTERNAL IDAMAX, DLAMCH, DNRM2
  223. * ..
  224. * .. External Subroutines ..
  225. EXTERNAL DCOPY, DLAGTF, DLAGTS, DLARNV, DSCAL, XERBLA
  226. * ..
  227. * .. Intrinsic Functions ..
  228. INTRINSIC ABS, DBLE, DCMPLX, MAX, SQRT
  229. * ..
  230. * .. Executable Statements ..
  231. *
  232. * Test the input parameters.
  233. *
  234. INFO = 0
  235. DO 10 I = 1, M
  236. IFAIL( I ) = 0
  237. 10 CONTINUE
  238. *
  239. IF( N.LT.0 ) THEN
  240. INFO = -1
  241. ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
  242. INFO = -4
  243. ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
  244. INFO = -9
  245. ELSE
  246. DO 20 J = 2, M
  247. IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN
  248. INFO = -6
  249. GO TO 30
  250. END IF
  251. IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) )
  252. $ THEN
  253. INFO = -5
  254. GO TO 30
  255. END IF
  256. 20 CONTINUE
  257. 30 CONTINUE
  258. END IF
  259. *
  260. IF( INFO.NE.0 ) THEN
  261. CALL XERBLA( 'ZSTEIN', -INFO )
  262. RETURN
  263. END IF
  264. *
  265. * Quick return if possible
  266. *
  267. IF( N.EQ.0 .OR. M.EQ.0 ) THEN
  268. RETURN
  269. ELSE IF( N.EQ.1 ) THEN
  270. Z( 1, 1 ) = CONE
  271. RETURN
  272. END IF
  273. *
  274. * Get machine constants.
  275. *
  276. EPS = DLAMCH( 'Precision' )
  277. *
  278. * Initialize seed for random number generator DLARNV.
  279. *
  280. DO 40 I = 1, 4
  281. ISEED( I ) = 1
  282. 40 CONTINUE
  283. *
  284. * Initialize pointers.
  285. *
  286. INDRV1 = 0
  287. INDRV2 = INDRV1 + N
  288. INDRV3 = INDRV2 + N
  289. INDRV4 = INDRV3 + N
  290. INDRV5 = INDRV4 + N
  291. *
  292. * Compute eigenvectors of matrix blocks.
  293. *
  294. J1 = 1
  295. DO 180 NBLK = 1, IBLOCK( M )
  296. *
  297. * Find starting and ending indices of block nblk.
  298. *
  299. IF( NBLK.EQ.1 ) THEN
  300. B1 = 1
  301. ELSE
  302. B1 = ISPLIT( NBLK-1 ) + 1
  303. END IF
  304. BN = ISPLIT( NBLK )
  305. BLKSIZ = BN - B1 + 1
  306. IF( BLKSIZ.EQ.1 )
  307. $ GO TO 60
  308. GPIND = J1
  309. *
  310. * Compute reorthogonalization criterion and stopping criterion.
  311. *
  312. ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
  313. ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
  314. DO 50 I = B1 + 1, BN - 1
  315. ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+
  316. $ ABS( E( I ) ) )
  317. 50 CONTINUE
  318. ORTOL = ODM3*ONENRM
  319. *
  320. DTPCRT = SQRT( ODM1 / BLKSIZ )
  321. *
  322. * Loop through eigenvalues of block nblk.
  323. *
  324. 60 CONTINUE
  325. JBLK = 0
  326. DO 170 J = J1, M
  327. IF( IBLOCK( J ).NE.NBLK ) THEN
  328. J1 = J
  329. GO TO 180
  330. END IF
  331. JBLK = JBLK + 1
  332. XJ = W( J )
  333. *
  334. * Skip all the work if the block size is one.
  335. *
  336. IF( BLKSIZ.EQ.1 ) THEN
  337. WORK( INDRV1+1 ) = ONE
  338. GO TO 140
  339. END IF
  340. *
  341. * If eigenvalues j and j-1 are too close, add a relatively
  342. * small perturbation.
  343. *
  344. IF( JBLK.GT.1 ) THEN
  345. EPS1 = ABS( EPS*XJ )
  346. PERTOL = TEN*EPS1
  347. SEP = XJ - XJM
  348. IF( SEP.LT.PERTOL )
  349. $ XJ = XJM + PERTOL
  350. END IF
  351. *
  352. ITS = 0
  353. NRMCHK = 0
  354. *
  355. * Get random starting vector.
  356. *
  357. CALL DLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) )
  358. *
  359. * Copy the matrix T so it won't be destroyed in factorization.
  360. *
  361. CALL DCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 )
  362. CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 )
  363. CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 )
  364. *
  365. * Compute LU factors with partial pivoting ( PT = LU )
  366. *
  367. TOL = ZERO
  368. CALL DLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, WORK( INDRV2+2 ),
  369. $ WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK,
  370. $ IINFO )
  371. *
  372. * Update iteration count.
  373. *
  374. 70 CONTINUE
  375. ITS = ITS + 1
  376. IF( ITS.GT.MAXITS )
  377. $ GO TO 120
  378. *
  379. * Normalize and scale the righthand side vector Pb.
  380. *
  381. JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
  382. SCL = BLKSIZ*ONENRM*MAX( EPS,
  383. $ ABS( WORK( INDRV4+BLKSIZ ) ) ) /
  384. $ ABS( WORK( INDRV1+JMAX ) )
  385. CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
  386. *
  387. * Solve the system LU = Pb.
  388. *
  389. CALL DLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), WORK( INDRV2+2 ),
  390. $ WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK,
  391. $ WORK( INDRV1+1 ), TOL, IINFO )
  392. *
  393. * Reorthogonalize by modified Gram-Schmidt if eigenvalues are
  394. * close enough.
  395. *
  396. IF( JBLK.EQ.1 )
  397. $ GO TO 110
  398. IF( ABS( XJ-XJM ).GT.ORTOL )
  399. $ GPIND = J
  400. IF( GPIND.NE.J ) THEN
  401. DO 100 I = GPIND, J - 1
  402. ZTR = ZERO
  403. DO 80 JR = 1, BLKSIZ
  404. ZTR = ZTR + WORK( INDRV1+JR )*
  405. $ DBLE( Z( B1-1+JR, I ) )
  406. 80 CONTINUE
  407. DO 90 JR = 1, BLKSIZ
  408. WORK( INDRV1+JR ) = WORK( INDRV1+JR ) -
  409. $ ZTR*DBLE( Z( B1-1+JR, I ) )
  410. 90 CONTINUE
  411. 100 CONTINUE
  412. END IF
  413. *
  414. * Check the infinity norm of the iterate.
  415. *
  416. 110 CONTINUE
  417. JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
  418. NRM = ABS( WORK( INDRV1+JMAX ) )
  419. *
  420. * Continue for additional iterations after norm reaches
  421. * stopping criterion.
  422. *
  423. IF( NRM.LT.DTPCRT )
  424. $ GO TO 70
  425. NRMCHK = NRMCHK + 1
  426. IF( NRMCHK.LT.EXTRA+1 )
  427. $ GO TO 70
  428. *
  429. GO TO 130
  430. *
  431. * If stopping criterion was not satisfied, update info and
  432. * store eigenvector number in array ifail.
  433. *
  434. 120 CONTINUE
  435. INFO = INFO + 1
  436. IFAIL( INFO ) = J
  437. *
  438. * Accept iterate as jth eigenvector.
  439. *
  440. 130 CONTINUE
  441. SCL = ONE / DNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 )
  442. JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
  443. IF( WORK( INDRV1+JMAX ).LT.ZERO )
  444. $ SCL = -SCL
  445. CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
  446. 140 CONTINUE
  447. DO 150 I = 1, N
  448. Z( I, J ) = CZERO
  449. 150 CONTINUE
  450. DO 160 I = 1, BLKSIZ
  451. Z( B1+I-1, J ) = DCMPLX( WORK( INDRV1+I ), ZERO )
  452. 160 CONTINUE
  453. *
  454. * Save the shift to check eigenvalue spacing at next
  455. * iteration.
  456. *
  457. XJM = XJ
  458. *
  459. 170 CONTINUE
  460. 180 CONTINUE
  461. *
  462. RETURN
  463. *
  464. * End of ZSTEIN
  465. *
  466. END