You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zppequ.f 6.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. *> \brief \b ZPPEQU
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZPPEQU + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zppequ.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zppequ.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zppequ.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * DOUBLE PRECISION AMAX, SCOND
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION S( * )
  30. * COMPLEX*16 AP( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZPPEQU computes row and column scalings intended to equilibrate a
  40. *> Hermitian positive definite matrix A in packed storage and reduce
  41. *> its condition number (with respect to the two-norm). S contains the
  42. *> scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
  43. *> B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
  44. *> This choice of S puts the condition number of B within a factor N of
  45. *> the smallest possible condition number over all possible diagonal
  46. *> scalings.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] UPLO
  53. *> \verbatim
  54. *> UPLO is CHARACTER*1
  55. *> = 'U': Upper triangle of A is stored;
  56. *> = 'L': Lower triangle of A is stored.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] N
  60. *> \verbatim
  61. *> N is INTEGER
  62. *> The order of the matrix A. N >= 0.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] AP
  66. *> \verbatim
  67. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  68. *> The upper or lower triangle of the Hermitian matrix A, packed
  69. *> columnwise in a linear array. The j-th column of A is stored
  70. *> in the array AP as follows:
  71. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  72. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  73. *> \endverbatim
  74. *>
  75. *> \param[out] S
  76. *> \verbatim
  77. *> S is DOUBLE PRECISION array, dimension (N)
  78. *> If INFO = 0, S contains the scale factors for A.
  79. *> \endverbatim
  80. *>
  81. *> \param[out] SCOND
  82. *> \verbatim
  83. *> SCOND is DOUBLE PRECISION
  84. *> If INFO = 0, S contains the ratio of the smallest S(i) to
  85. *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
  86. *> large nor too small, it is not worth scaling by S.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] AMAX
  90. *> \verbatim
  91. *> AMAX is DOUBLE PRECISION
  92. *> Absolute value of largest matrix element. If AMAX is very
  93. *> close to overflow or very close to underflow, the matrix
  94. *> should be scaled.
  95. *> \endverbatim
  96. *>
  97. *> \param[out] INFO
  98. *> \verbatim
  99. *> INFO is INTEGER
  100. *> = 0: successful exit
  101. *> < 0: if INFO = -i, the i-th argument had an illegal value
  102. *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
  103. *> \endverbatim
  104. *
  105. * Authors:
  106. * ========
  107. *
  108. *> \author Univ. of Tennessee
  109. *> \author Univ. of California Berkeley
  110. *> \author Univ. of Colorado Denver
  111. *> \author NAG Ltd.
  112. *
  113. *> \ingroup complex16OTHERcomputational
  114. *
  115. * =====================================================================
  116. SUBROUTINE ZPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
  117. *
  118. * -- LAPACK computational routine --
  119. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  120. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  121. *
  122. * .. Scalar Arguments ..
  123. CHARACTER UPLO
  124. INTEGER INFO, N
  125. DOUBLE PRECISION AMAX, SCOND
  126. * ..
  127. * .. Array Arguments ..
  128. DOUBLE PRECISION S( * )
  129. COMPLEX*16 AP( * )
  130. * ..
  131. *
  132. * =====================================================================
  133. *
  134. * .. Parameters ..
  135. DOUBLE PRECISION ONE, ZERO
  136. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  137. * ..
  138. * .. Local Scalars ..
  139. LOGICAL UPPER
  140. INTEGER I, JJ
  141. DOUBLE PRECISION SMIN
  142. * ..
  143. * .. External Functions ..
  144. LOGICAL LSAME
  145. EXTERNAL LSAME
  146. * ..
  147. * .. External Subroutines ..
  148. EXTERNAL XERBLA
  149. * ..
  150. * .. Intrinsic Functions ..
  151. INTRINSIC DBLE, MAX, MIN, SQRT
  152. * ..
  153. * .. Executable Statements ..
  154. *
  155. * Test the input parameters.
  156. *
  157. INFO = 0
  158. UPPER = LSAME( UPLO, 'U' )
  159. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  160. INFO = -1
  161. ELSE IF( N.LT.0 ) THEN
  162. INFO = -2
  163. END IF
  164. IF( INFO.NE.0 ) THEN
  165. CALL XERBLA( 'ZPPEQU', -INFO )
  166. RETURN
  167. END IF
  168. *
  169. * Quick return if possible
  170. *
  171. IF( N.EQ.0 ) THEN
  172. SCOND = ONE
  173. AMAX = ZERO
  174. RETURN
  175. END IF
  176. *
  177. * Initialize SMIN and AMAX.
  178. *
  179. S( 1 ) = DBLE( AP( 1 ) )
  180. SMIN = S( 1 )
  181. AMAX = S( 1 )
  182. *
  183. IF( UPPER ) THEN
  184. *
  185. * UPLO = 'U': Upper triangle of A is stored.
  186. * Find the minimum and maximum diagonal elements.
  187. *
  188. JJ = 1
  189. DO 10 I = 2, N
  190. JJ = JJ + I
  191. S( I ) = DBLE( AP( JJ ) )
  192. SMIN = MIN( SMIN, S( I ) )
  193. AMAX = MAX( AMAX, S( I ) )
  194. 10 CONTINUE
  195. *
  196. ELSE
  197. *
  198. * UPLO = 'L': Lower triangle of A is stored.
  199. * Find the minimum and maximum diagonal elements.
  200. *
  201. JJ = 1
  202. DO 20 I = 2, N
  203. JJ = JJ + N - I + 2
  204. S( I ) = DBLE( AP( JJ ) )
  205. SMIN = MIN( SMIN, S( I ) )
  206. AMAX = MAX( AMAX, S( I ) )
  207. 20 CONTINUE
  208. END IF
  209. *
  210. IF( SMIN.LE.ZERO ) THEN
  211. *
  212. * Find the first non-positive diagonal element and return.
  213. *
  214. DO 30 I = 1, N
  215. IF( S( I ).LE.ZERO ) THEN
  216. INFO = I
  217. RETURN
  218. END IF
  219. 30 CONTINUE
  220. ELSE
  221. *
  222. * Set the scale factors to the reciprocals
  223. * of the diagonal elements.
  224. *
  225. DO 40 I = 1, N
  226. S( I ) = ONE / SQRT( S( I ) )
  227. 40 CONTINUE
  228. *
  229. * Compute SCOND = min(S(I)) / max(S(I))
  230. *
  231. SCOND = SQRT( SMIN ) / SQRT( AMAX )
  232. END IF
  233. RETURN
  234. *
  235. * End of ZPPEQU
  236. *
  237. END