You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dspgvd.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. *> \brief \b DSPGVD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSPGVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  22. * LWORK, IWORK, LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, ITYPE, LDZ, LIWORK, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
  31. * $ Z( LDZ, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DSPGVD computes all the eigenvalues, and optionally, the eigenvectors
  41. *> of a real generalized symmetric-definite eigenproblem, of the form
  42. *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
  43. *> B are assumed to be symmetric, stored in packed format, and B is also
  44. *> positive definite.
  45. *> If eigenvectors are desired, it uses a divide and conquer algorithm.
  46. *>
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> Specifies the problem type to be solved:
  56. *> = 1: A*x = (lambda)*B*x
  57. *> = 2: A*B*x = (lambda)*x
  58. *> = 3: B*A*x = (lambda)*x
  59. *> \endverbatim
  60. *>
  61. *> \param[in] JOBZ
  62. *> \verbatim
  63. *> JOBZ is CHARACTER*1
  64. *> = 'N': Compute eigenvalues only;
  65. *> = 'V': Compute eigenvalues and eigenvectors.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] UPLO
  69. *> \verbatim
  70. *> UPLO is CHARACTER*1
  71. *> = 'U': Upper triangles of A and B are stored;
  72. *> = 'L': Lower triangles of A and B are stored.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] N
  76. *> \verbatim
  77. *> N is INTEGER
  78. *> The order of the matrices A and B. N >= 0.
  79. *> \endverbatim
  80. *>
  81. *> \param[in,out] AP
  82. *> \verbatim
  83. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  84. *> On entry, the upper or lower triangle of the symmetric matrix
  85. *> A, packed columnwise in a linear array. The j-th column of A
  86. *> is stored in the array AP as follows:
  87. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  88. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  89. *>
  90. *> On exit, the contents of AP are destroyed.
  91. *> \endverbatim
  92. *>
  93. *> \param[in,out] BP
  94. *> \verbatim
  95. *> BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  96. *> On entry, the upper or lower triangle of the symmetric matrix
  97. *> B, packed columnwise in a linear array. The j-th column of B
  98. *> is stored in the array BP as follows:
  99. *> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
  100. *> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
  101. *>
  102. *> On exit, the triangular factor U or L from the Cholesky
  103. *> factorization B = U**T*U or B = L*L**T, in the same storage
  104. *> format as B.
  105. *> \endverbatim
  106. *>
  107. *> \param[out] W
  108. *> \verbatim
  109. *> W is DOUBLE PRECISION array, dimension (N)
  110. *> If INFO = 0, the eigenvalues in ascending order.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] Z
  114. *> \verbatim
  115. *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
  116. *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  117. *> eigenvectors. The eigenvectors are normalized as follows:
  118. *> if ITYPE = 1 or 2, Z**T*B*Z = I;
  119. *> if ITYPE = 3, Z**T*inv(B)*Z = I.
  120. *> If JOBZ = 'N', then Z is not referenced.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] LDZ
  124. *> \verbatim
  125. *> LDZ is INTEGER
  126. *> The leading dimension of the array Z. LDZ >= 1, and if
  127. *> JOBZ = 'V', LDZ >= max(1,N).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] WORK
  131. *> \verbatim
  132. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  133. *> On exit, if INFO = 0, WORK(1) returns the required LWORK.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] LWORK
  137. *> \verbatim
  138. *> LWORK is INTEGER
  139. *> The dimension of the array WORK.
  140. *> If N <= 1, LWORK >= 1.
  141. *> If JOBZ = 'N' and N > 1, LWORK >= 2*N.
  142. *> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
  143. *>
  144. *> If LWORK = -1, then a workspace query is assumed; the routine
  145. *> only calculates the required sizes of the WORK and IWORK
  146. *> arrays, returns these values as the first entries of the WORK
  147. *> and IWORK arrays, and no error message related to LWORK or
  148. *> LIWORK is issued by XERBLA.
  149. *> \endverbatim
  150. *>
  151. *> \param[out] IWORK
  152. *> \verbatim
  153. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  154. *> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] LIWORK
  158. *> \verbatim
  159. *> LIWORK is INTEGER
  160. *> The dimension of the array IWORK.
  161. *> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
  162. *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
  163. *>
  164. *> If LIWORK = -1, then a workspace query is assumed; the
  165. *> routine only calculates the required sizes of the WORK and
  166. *> IWORK arrays, returns these values as the first entries of
  167. *> the WORK and IWORK arrays, and no error message related to
  168. *> LWORK or LIWORK is issued by XERBLA.
  169. *> \endverbatim
  170. *>
  171. *> \param[out] INFO
  172. *> \verbatim
  173. *> INFO is INTEGER
  174. *> = 0: successful exit
  175. *> < 0: if INFO = -i, the i-th argument had an illegal value
  176. *> > 0: DPPTRF or DSPEVD returned an error code:
  177. *> <= N: if INFO = i, DSPEVD failed to converge;
  178. *> i off-diagonal elements of an intermediate
  179. *> tridiagonal form did not converge to zero;
  180. *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
  181. *> principal minor of order i of B is not positive.
  182. *> The factorization of B could not be completed and
  183. *> no eigenvalues or eigenvectors were computed.
  184. *> \endverbatim
  185. *
  186. * Authors:
  187. * ========
  188. *
  189. *> \author Univ. of Tennessee
  190. *> \author Univ. of California Berkeley
  191. *> \author Univ. of Colorado Denver
  192. *> \author NAG Ltd.
  193. *
  194. *> \ingroup doubleOTHEReigen
  195. *
  196. *> \par Contributors:
  197. * ==================
  198. *>
  199. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  200. *
  201. * =====================================================================
  202. SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  203. $ LWORK, IWORK, LIWORK, INFO )
  204. *
  205. * -- LAPACK driver routine --
  206. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  207. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  208. *
  209. * .. Scalar Arguments ..
  210. CHARACTER JOBZ, UPLO
  211. INTEGER INFO, ITYPE, LDZ, LIWORK, LWORK, N
  212. * ..
  213. * .. Array Arguments ..
  214. INTEGER IWORK( * )
  215. DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
  216. $ Z( LDZ, * )
  217. * ..
  218. *
  219. * =====================================================================
  220. *
  221. * .. Local Scalars ..
  222. LOGICAL LQUERY, UPPER, WANTZ
  223. CHARACTER TRANS
  224. INTEGER J, LIWMIN, LWMIN, NEIG
  225. * ..
  226. * .. External Functions ..
  227. LOGICAL LSAME
  228. EXTERNAL LSAME
  229. * ..
  230. * .. External Subroutines ..
  231. EXTERNAL DPPTRF, DSPEVD, DSPGST, DTPMV, DTPSV, XERBLA
  232. * ..
  233. * .. Intrinsic Functions ..
  234. INTRINSIC DBLE, MAX
  235. * ..
  236. * .. Executable Statements ..
  237. *
  238. * Test the input parameters.
  239. *
  240. WANTZ = LSAME( JOBZ, 'V' )
  241. UPPER = LSAME( UPLO, 'U' )
  242. LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  243. *
  244. INFO = 0
  245. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  246. INFO = -1
  247. ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  248. INFO = -2
  249. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  250. INFO = -3
  251. ELSE IF( N.LT.0 ) THEN
  252. INFO = -4
  253. ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  254. INFO = -9
  255. END IF
  256. *
  257. IF( INFO.EQ.0 ) THEN
  258. IF( N.LE.1 ) THEN
  259. LIWMIN = 1
  260. LWMIN = 1
  261. ELSE
  262. IF( WANTZ ) THEN
  263. LIWMIN = 3 + 5*N
  264. LWMIN = 1 + 6*N + 2*N**2
  265. ELSE
  266. LIWMIN = 1
  267. LWMIN = 2*N
  268. END IF
  269. END IF
  270. WORK( 1 ) = LWMIN
  271. IWORK( 1 ) = LIWMIN
  272. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  273. INFO = -11
  274. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  275. INFO = -13
  276. END IF
  277. END IF
  278. *
  279. IF( INFO.NE.0 ) THEN
  280. CALL XERBLA( 'DSPGVD', -INFO )
  281. RETURN
  282. ELSE IF( LQUERY ) THEN
  283. RETURN
  284. END IF
  285. *
  286. * Quick return if possible
  287. *
  288. IF( N.EQ.0 )
  289. $ RETURN
  290. *
  291. * Form a Cholesky factorization of BP.
  292. *
  293. CALL DPPTRF( UPLO, N, BP, INFO )
  294. IF( INFO.NE.0 ) THEN
  295. INFO = N + INFO
  296. RETURN
  297. END IF
  298. *
  299. * Transform problem to standard eigenvalue problem and solve.
  300. *
  301. CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
  302. CALL DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
  303. $ LIWORK, INFO )
  304. LWMIN = INT( MAX( DBLE( LWMIN ), DBLE( WORK( 1 ) ) ) )
  305. LIWMIN = INT( MAX( DBLE( LIWMIN ), DBLE( IWORK( 1 ) ) ) )
  306. *
  307. IF( WANTZ ) THEN
  308. *
  309. * Backtransform eigenvectors to the original problem.
  310. *
  311. NEIG = N
  312. IF( INFO.GT.0 )
  313. $ NEIG = INFO - 1
  314. IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  315. *
  316. * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  317. * backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
  318. *
  319. IF( UPPER ) THEN
  320. TRANS = 'N'
  321. ELSE
  322. TRANS = 'T'
  323. END IF
  324. *
  325. DO 10 J = 1, NEIG
  326. CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  327. $ 1 )
  328. 10 CONTINUE
  329. *
  330. ELSE IF( ITYPE.EQ.3 ) THEN
  331. *
  332. * For B*A*x=(lambda)*x;
  333. * backtransform eigenvectors: x = L*y or U**T *y
  334. *
  335. IF( UPPER ) THEN
  336. TRANS = 'T'
  337. ELSE
  338. TRANS = 'N'
  339. END IF
  340. *
  341. DO 20 J = 1, NEIG
  342. CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  343. $ 1 )
  344. 20 CONTINUE
  345. END IF
  346. END IF
  347. *
  348. WORK( 1 ) = LWMIN
  349. IWORK( 1 ) = LIWMIN
  350. *
  351. RETURN
  352. *
  353. * End of DSPGVD
  354. *
  355. END