You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgbsvx.f 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. *> \brief <b> CGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGBSVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbsvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbsvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbsvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
  22. * LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
  23. * RCOND, FERR, BERR, WORK, RWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER EQUED, FACT, TRANS
  27. * INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
  28. * REAL RCOND
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IPIV( * )
  32. * REAL BERR( * ), C( * ), FERR( * ), R( * ),
  33. * $ RWORK( * )
  34. * COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  35. * $ WORK( * ), X( LDX, * )
  36. * ..
  37. *
  38. *
  39. *> \par Purpose:
  40. * =============
  41. *>
  42. *> \verbatim
  43. *>
  44. *> CGBSVX uses the LU factorization to compute the solution to a complex
  45. *> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
  46. *> where A is a band matrix of order N with KL subdiagonals and KU
  47. *> superdiagonals, and X and B are N-by-NRHS matrices.
  48. *>
  49. *> Error bounds on the solution and a condition estimate are also
  50. *> provided.
  51. *> \endverbatim
  52. *
  53. *> \par Description:
  54. * =================
  55. *>
  56. *> \verbatim
  57. *>
  58. *> The following steps are performed by this subroutine:
  59. *>
  60. *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
  61. *> the system:
  62. *> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
  63. *> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
  64. *> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
  65. *> Whether or not the system will be equilibrated depends on the
  66. *> scaling of the matrix A, but if equilibration is used, A is
  67. *> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
  68. *> or diag(C)*B (if TRANS = 'T' or 'C').
  69. *>
  70. *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
  71. *> matrix A (after equilibration if FACT = 'E') as
  72. *> A = L * U,
  73. *> where L is a product of permutation and unit lower triangular
  74. *> matrices with KL subdiagonals, and U is upper triangular with
  75. *> KL+KU superdiagonals.
  76. *>
  77. *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
  78. *> returns with INFO = i. Otherwise, the factored form of A is used
  79. *> to estimate the condition number of the matrix A. If the
  80. *> reciprocal of the condition number is less than machine precision,
  81. *> INFO = N+1 is returned as a warning, but the routine still goes on
  82. *> to solve for X and compute error bounds as described below.
  83. *>
  84. *> 4. The system of equations is solved for X using the factored form
  85. *> of A.
  86. *>
  87. *> 5. Iterative refinement is applied to improve the computed solution
  88. *> matrix and calculate error bounds and backward error estimates
  89. *> for it.
  90. *>
  91. *> 6. If equilibration was used, the matrix X is premultiplied by
  92. *> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
  93. *> that it solves the original system before equilibration.
  94. *> \endverbatim
  95. *
  96. * Arguments:
  97. * ==========
  98. *
  99. *> \param[in] FACT
  100. *> \verbatim
  101. *> FACT is CHARACTER*1
  102. *> Specifies whether or not the factored form of the matrix A is
  103. *> supplied on entry, and if not, whether the matrix A should be
  104. *> equilibrated before it is factored.
  105. *> = 'F': On entry, AFB and IPIV contain the factored form of
  106. *> A. If EQUED is not 'N', the matrix A has been
  107. *> equilibrated with scaling factors given by R and C.
  108. *> AB, AFB, and IPIV are not modified.
  109. *> = 'N': The matrix A will be copied to AFB and factored.
  110. *> = 'E': The matrix A will be equilibrated if necessary, then
  111. *> copied to AFB and factored.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] TRANS
  115. *> \verbatim
  116. *> TRANS is CHARACTER*1
  117. *> Specifies the form of the system of equations.
  118. *> = 'N': A * X = B (No transpose)
  119. *> = 'T': A**T * X = B (Transpose)
  120. *> = 'C': A**H * X = B (Conjugate transpose)
  121. *> \endverbatim
  122. *>
  123. *> \param[in] N
  124. *> \verbatim
  125. *> N is INTEGER
  126. *> The number of linear equations, i.e., the order of the
  127. *> matrix A. N >= 0.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] KL
  131. *> \verbatim
  132. *> KL is INTEGER
  133. *> The number of subdiagonals within the band of A. KL >= 0.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] KU
  137. *> \verbatim
  138. *> KU is INTEGER
  139. *> The number of superdiagonals within the band of A. KU >= 0.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] NRHS
  143. *> \verbatim
  144. *> NRHS is INTEGER
  145. *> The number of right hand sides, i.e., the number of columns
  146. *> of the matrices B and X. NRHS >= 0.
  147. *> \endverbatim
  148. *>
  149. *> \param[in,out] AB
  150. *> \verbatim
  151. *> AB is COMPLEX array, dimension (LDAB,N)
  152. *> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
  153. *> The j-th column of A is stored in the j-th column of the
  154. *> array AB as follows:
  155. *> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
  156. *>
  157. *> If FACT = 'F' and EQUED is not 'N', then A must have been
  158. *> equilibrated by the scaling factors in R and/or C. AB is not
  159. *> modified if FACT = 'F' or 'N', or if FACT = 'E' and
  160. *> EQUED = 'N' on exit.
  161. *>
  162. *> On exit, if EQUED .ne. 'N', A is scaled as follows:
  163. *> EQUED = 'R': A := diag(R) * A
  164. *> EQUED = 'C': A := A * diag(C)
  165. *> EQUED = 'B': A := diag(R) * A * diag(C).
  166. *> \endverbatim
  167. *>
  168. *> \param[in] LDAB
  169. *> \verbatim
  170. *> LDAB is INTEGER
  171. *> The leading dimension of the array AB. LDAB >= KL+KU+1.
  172. *> \endverbatim
  173. *>
  174. *> \param[in,out] AFB
  175. *> \verbatim
  176. *> AFB is COMPLEX array, dimension (LDAFB,N)
  177. *> If FACT = 'F', then AFB is an input argument and on entry
  178. *> contains details of the LU factorization of the band matrix
  179. *> A, as computed by CGBTRF. U is stored as an upper triangular
  180. *> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
  181. *> and the multipliers used during the factorization are stored
  182. *> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
  183. *> the factored form of the equilibrated matrix A.
  184. *>
  185. *> If FACT = 'N', then AFB is an output argument and on exit
  186. *> returns details of the LU factorization of A.
  187. *>
  188. *> If FACT = 'E', then AFB is an output argument and on exit
  189. *> returns details of the LU factorization of the equilibrated
  190. *> matrix A (see the description of AB for the form of the
  191. *> equilibrated matrix).
  192. *> \endverbatim
  193. *>
  194. *> \param[in] LDAFB
  195. *> \verbatim
  196. *> LDAFB is INTEGER
  197. *> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
  198. *> \endverbatim
  199. *>
  200. *> \param[in,out] IPIV
  201. *> \verbatim
  202. *> IPIV is INTEGER array, dimension (N)
  203. *> If FACT = 'F', then IPIV is an input argument and on entry
  204. *> contains the pivot indices from the factorization A = L*U
  205. *> as computed by CGBTRF; row i of the matrix was interchanged
  206. *> with row IPIV(i).
  207. *>
  208. *> If FACT = 'N', then IPIV is an output argument and on exit
  209. *> contains the pivot indices from the factorization A = L*U
  210. *> of the original matrix A.
  211. *>
  212. *> If FACT = 'E', then IPIV is an output argument and on exit
  213. *> contains the pivot indices from the factorization A = L*U
  214. *> of the equilibrated matrix A.
  215. *> \endverbatim
  216. *>
  217. *> \param[in,out] EQUED
  218. *> \verbatim
  219. *> EQUED is CHARACTER*1
  220. *> Specifies the form of equilibration that was done.
  221. *> = 'N': No equilibration (always true if FACT = 'N').
  222. *> = 'R': Row equilibration, i.e., A has been premultiplied by
  223. *> diag(R).
  224. *> = 'C': Column equilibration, i.e., A has been postmultiplied
  225. *> by diag(C).
  226. *> = 'B': Both row and column equilibration, i.e., A has been
  227. *> replaced by diag(R) * A * diag(C).
  228. *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
  229. *> output argument.
  230. *> \endverbatim
  231. *>
  232. *> \param[in,out] R
  233. *> \verbatim
  234. *> R is REAL array, dimension (N)
  235. *> The row scale factors for A. If EQUED = 'R' or 'B', A is
  236. *> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  237. *> is not accessed. R is an input argument if FACT = 'F';
  238. *> otherwise, R is an output argument. If FACT = 'F' and
  239. *> EQUED = 'R' or 'B', each element of R must be positive.
  240. *> \endverbatim
  241. *>
  242. *> \param[in,out] C
  243. *> \verbatim
  244. *> C is REAL array, dimension (N)
  245. *> The column scale factors for A. If EQUED = 'C' or 'B', A is
  246. *> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  247. *> is not accessed. C is an input argument if FACT = 'F';
  248. *> otherwise, C is an output argument. If FACT = 'F' and
  249. *> EQUED = 'C' or 'B', each element of C must be positive.
  250. *> \endverbatim
  251. *>
  252. *> \param[in,out] B
  253. *> \verbatim
  254. *> B is COMPLEX array, dimension (LDB,NRHS)
  255. *> On entry, the right hand side matrix B.
  256. *> On exit,
  257. *> if EQUED = 'N', B is not modified;
  258. *> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  259. *> diag(R)*B;
  260. *> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  261. *> overwritten by diag(C)*B.
  262. *> \endverbatim
  263. *>
  264. *> \param[in] LDB
  265. *> \verbatim
  266. *> LDB is INTEGER
  267. *> The leading dimension of the array B. LDB >= max(1,N).
  268. *> \endverbatim
  269. *>
  270. *> \param[out] X
  271. *> \verbatim
  272. *> X is COMPLEX array, dimension (LDX,NRHS)
  273. *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
  274. *> to the original system of equations. Note that A and B are
  275. *> modified on exit if EQUED .ne. 'N', and the solution to the
  276. *> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
  277. *> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
  278. *> and EQUED = 'R' or 'B'.
  279. *> \endverbatim
  280. *>
  281. *> \param[in] LDX
  282. *> \verbatim
  283. *> LDX is INTEGER
  284. *> The leading dimension of the array X. LDX >= max(1,N).
  285. *> \endverbatim
  286. *>
  287. *> \param[out] RCOND
  288. *> \verbatim
  289. *> RCOND is REAL
  290. *> The estimate of the reciprocal condition number of the matrix
  291. *> A after equilibration (if done). If RCOND is less than the
  292. *> machine precision (in particular, if RCOND = 0), the matrix
  293. *> is singular to working precision. This condition is
  294. *> indicated by a return code of INFO > 0.
  295. *> \endverbatim
  296. *>
  297. *> \param[out] FERR
  298. *> \verbatim
  299. *> FERR is REAL array, dimension (NRHS)
  300. *> The estimated forward error bound for each solution vector
  301. *> X(j) (the j-th column of the solution matrix X).
  302. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  303. *> is an estimated upper bound for the magnitude of the largest
  304. *> element in (X(j) - XTRUE) divided by the magnitude of the
  305. *> largest element in X(j). The estimate is as reliable as
  306. *> the estimate for RCOND, and is almost always a slight
  307. *> overestimate of the true error.
  308. *> \endverbatim
  309. *>
  310. *> \param[out] BERR
  311. *> \verbatim
  312. *> BERR is REAL array, dimension (NRHS)
  313. *> The componentwise relative backward error of each solution
  314. *> vector X(j) (i.e., the smallest relative change in
  315. *> any element of A or B that makes X(j) an exact solution).
  316. *> \endverbatim
  317. *>
  318. *> \param[out] WORK
  319. *> \verbatim
  320. *> WORK is COMPLEX array, dimension (2*N)
  321. *> \endverbatim
  322. *>
  323. *> \param[out] RWORK
  324. *> \verbatim
  325. *> RWORK is REAL array, dimension (MAX(1,N))
  326. *> On exit, RWORK(1) contains the reciprocal pivot growth
  327. *> factor norm(A)/norm(U). The "max absolute element" norm is
  328. *> used. If RWORK(1) is much less than 1, then the stability
  329. *> of the LU factorization of the (equilibrated) matrix A
  330. *> could be poor. This also means that the solution X, condition
  331. *> estimator RCOND, and forward error bound FERR could be
  332. *> unreliable. If factorization fails with 0<INFO<=N, then
  333. *> RWORK(1) contains the reciprocal pivot growth factor for the
  334. *> leading INFO columns of A.
  335. *> \endverbatim
  336. *>
  337. *> \param[out] INFO
  338. *> \verbatim
  339. *> INFO is INTEGER
  340. *> = 0: successful exit
  341. *> < 0: if INFO = -i, the i-th argument had an illegal value
  342. *> > 0: if INFO = i, and i is
  343. *> <= N: U(i,i) is exactly zero. The factorization
  344. *> has been completed, but the factor U is exactly
  345. *> singular, so the solution and error bounds
  346. *> could not be computed. RCOND = 0 is returned.
  347. *> = N+1: U is nonsingular, but RCOND is less than machine
  348. *> precision, meaning that the matrix is singular
  349. *> to working precision. Nevertheless, the
  350. *> solution and error bounds are computed because
  351. *> there are a number of situations where the
  352. *> computed solution can be more accurate than the
  353. *> value of RCOND would suggest.
  354. *> \endverbatim
  355. *
  356. * Authors:
  357. * ========
  358. *
  359. *> \author Univ. of Tennessee
  360. *> \author Univ. of California Berkeley
  361. *> \author Univ. of Colorado Denver
  362. *> \author NAG Ltd.
  363. *
  364. *> \ingroup complexGBsolve
  365. *
  366. * =====================================================================
  367. SUBROUTINE CGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
  368. $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
  369. $ RCOND, FERR, BERR, WORK, RWORK, INFO )
  370. *
  371. * -- LAPACK driver routine --
  372. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  373. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  374. *
  375. * .. Scalar Arguments ..
  376. CHARACTER EQUED, FACT, TRANS
  377. INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
  378. REAL RCOND
  379. * ..
  380. * .. Array Arguments ..
  381. INTEGER IPIV( * )
  382. REAL BERR( * ), C( * ), FERR( * ), R( * ),
  383. $ RWORK( * )
  384. COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  385. $ WORK( * ), X( LDX, * )
  386. * ..
  387. *
  388. * =====================================================================
  389. * Moved setting of INFO = N+1 so INFO does not subsequently get
  390. * overwritten. Sven, 17 Mar 05.
  391. * =====================================================================
  392. *
  393. * .. Parameters ..
  394. REAL ZERO, ONE
  395. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  396. * ..
  397. * .. Local Scalars ..
  398. LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  399. CHARACTER NORM
  400. INTEGER I, INFEQU, J, J1, J2
  401. REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
  402. $ ROWCND, RPVGRW, SMLNUM
  403. * ..
  404. * .. External Functions ..
  405. LOGICAL LSAME
  406. REAL CLANGB, CLANTB, SLAMCH
  407. EXTERNAL LSAME, CLANGB, CLANTB, SLAMCH
  408. * ..
  409. * .. External Subroutines ..
  410. EXTERNAL CCOPY, CGBCON, CGBEQU, CGBRFS, CGBTRF, CGBTRS,
  411. $ CLACPY, CLAQGB, XERBLA
  412. * ..
  413. * .. Intrinsic Functions ..
  414. INTRINSIC ABS, MAX, MIN
  415. * ..
  416. * .. Executable Statements ..
  417. *
  418. INFO = 0
  419. NOFACT = LSAME( FACT, 'N' )
  420. EQUIL = LSAME( FACT, 'E' )
  421. NOTRAN = LSAME( TRANS, 'N' )
  422. IF( NOFACT .OR. EQUIL ) THEN
  423. EQUED = 'N'
  424. ROWEQU = .FALSE.
  425. COLEQU = .FALSE.
  426. ELSE
  427. ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  428. COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  429. SMLNUM = SLAMCH( 'Safe minimum' )
  430. BIGNUM = ONE / SMLNUM
  431. END IF
  432. *
  433. * Test the input parameters.
  434. *
  435. IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  436. $ THEN
  437. INFO = -1
  438. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  439. $ LSAME( TRANS, 'C' ) ) THEN
  440. INFO = -2
  441. ELSE IF( N.LT.0 ) THEN
  442. INFO = -3
  443. ELSE IF( KL.LT.0 ) THEN
  444. INFO = -4
  445. ELSE IF( KU.LT.0 ) THEN
  446. INFO = -5
  447. ELSE IF( NRHS.LT.0 ) THEN
  448. INFO = -6
  449. ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  450. INFO = -8
  451. ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  452. INFO = -10
  453. ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  454. $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  455. INFO = -12
  456. ELSE
  457. IF( ROWEQU ) THEN
  458. RCMIN = BIGNUM
  459. RCMAX = ZERO
  460. DO 10 J = 1, N
  461. RCMIN = MIN( RCMIN, R( J ) )
  462. RCMAX = MAX( RCMAX, R( J ) )
  463. 10 CONTINUE
  464. IF( RCMIN.LE.ZERO ) THEN
  465. INFO = -13
  466. ELSE IF( N.GT.0 ) THEN
  467. ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  468. ELSE
  469. ROWCND = ONE
  470. END IF
  471. END IF
  472. IF( COLEQU .AND. INFO.EQ.0 ) THEN
  473. RCMIN = BIGNUM
  474. RCMAX = ZERO
  475. DO 20 J = 1, N
  476. RCMIN = MIN( RCMIN, C( J ) )
  477. RCMAX = MAX( RCMAX, C( J ) )
  478. 20 CONTINUE
  479. IF( RCMIN.LE.ZERO ) THEN
  480. INFO = -14
  481. ELSE IF( N.GT.0 ) THEN
  482. COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  483. ELSE
  484. COLCND = ONE
  485. END IF
  486. END IF
  487. IF( INFO.EQ.0 ) THEN
  488. IF( LDB.LT.MAX( 1, N ) ) THEN
  489. INFO = -16
  490. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  491. INFO = -18
  492. END IF
  493. END IF
  494. END IF
  495. *
  496. IF( INFO.NE.0 ) THEN
  497. CALL XERBLA( 'CGBSVX', -INFO )
  498. RETURN
  499. END IF
  500. *
  501. IF( EQUIL ) THEN
  502. *
  503. * Compute row and column scalings to equilibrate the matrix A.
  504. *
  505. CALL CGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  506. $ AMAX, INFEQU )
  507. IF( INFEQU.EQ.0 ) THEN
  508. *
  509. * Equilibrate the matrix.
  510. *
  511. CALL CLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  512. $ AMAX, EQUED )
  513. ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  514. COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  515. END IF
  516. END IF
  517. *
  518. * Scale the right hand side.
  519. *
  520. IF( NOTRAN ) THEN
  521. IF( ROWEQU ) THEN
  522. DO 40 J = 1, NRHS
  523. DO 30 I = 1, N
  524. B( I, J ) = R( I )*B( I, J )
  525. 30 CONTINUE
  526. 40 CONTINUE
  527. END IF
  528. ELSE IF( COLEQU ) THEN
  529. DO 60 J = 1, NRHS
  530. DO 50 I = 1, N
  531. B( I, J ) = C( I )*B( I, J )
  532. 50 CONTINUE
  533. 60 CONTINUE
  534. END IF
  535. *
  536. IF( NOFACT .OR. EQUIL ) THEN
  537. *
  538. * Compute the LU factorization of the band matrix A.
  539. *
  540. DO 70 J = 1, N
  541. J1 = MAX( J-KU, 1 )
  542. J2 = MIN( J+KL, N )
  543. CALL CCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
  544. $ AFB( KL+KU+1-J+J1, J ), 1 )
  545. 70 CONTINUE
  546. *
  547. CALL CGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
  548. *
  549. * Return if INFO is non-zero.
  550. *
  551. IF( INFO.GT.0 ) THEN
  552. *
  553. * Compute the reciprocal pivot growth factor of the
  554. * leading rank-deficient INFO columns of A.
  555. *
  556. ANORM = ZERO
  557. DO 90 J = 1, INFO
  558. DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  559. ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
  560. 80 CONTINUE
  561. 90 CONTINUE
  562. RPVGRW = CLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
  563. $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
  564. $ RWORK )
  565. IF( RPVGRW.EQ.ZERO ) THEN
  566. RPVGRW = ONE
  567. ELSE
  568. RPVGRW = ANORM / RPVGRW
  569. END IF
  570. RWORK( 1 ) = RPVGRW
  571. RCOND = ZERO
  572. RETURN
  573. END IF
  574. END IF
  575. *
  576. * Compute the norm of the matrix A and the
  577. * reciprocal pivot growth factor RPVGRW.
  578. *
  579. IF( NOTRAN ) THEN
  580. NORM = '1'
  581. ELSE
  582. NORM = 'I'
  583. END IF
  584. ANORM = CLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
  585. RPVGRW = CLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, RWORK )
  586. IF( RPVGRW.EQ.ZERO ) THEN
  587. RPVGRW = ONE
  588. ELSE
  589. RPVGRW = CLANGB( 'M', N, KL, KU, AB, LDAB, RWORK ) / RPVGRW
  590. END IF
  591. *
  592. * Compute the reciprocal of the condition number of A.
  593. *
  594. CALL CGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
  595. $ WORK, RWORK, INFO )
  596. *
  597. * Compute the solution matrix X.
  598. *
  599. CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  600. CALL CGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
  601. $ INFO )
  602. *
  603. * Use iterative refinement to improve the computed solution and
  604. * compute error bounds and backward error estimates for it.
  605. *
  606. CALL CGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
  607. $ B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
  608. *
  609. * Transform the solution matrix X to a solution of the original
  610. * system.
  611. *
  612. IF( NOTRAN ) THEN
  613. IF( COLEQU ) THEN
  614. DO 110 J = 1, NRHS
  615. DO 100 I = 1, N
  616. X( I, J ) = C( I )*X( I, J )
  617. 100 CONTINUE
  618. 110 CONTINUE
  619. DO 120 J = 1, NRHS
  620. FERR( J ) = FERR( J ) / COLCND
  621. 120 CONTINUE
  622. END IF
  623. ELSE IF( ROWEQU ) THEN
  624. DO 140 J = 1, NRHS
  625. DO 130 I = 1, N
  626. X( I, J ) = R( I )*X( I, J )
  627. 130 CONTINUE
  628. 140 CONTINUE
  629. DO 150 J = 1, NRHS
  630. FERR( J ) = FERR( J ) / ROWCND
  631. 150 CONTINUE
  632. END IF
  633. *
  634. * Set INFO = N+1 if the matrix is singular to working precision.
  635. *
  636. IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
  637. $ INFO = N + 1
  638. *
  639. RWORK( 1 ) = RPVGRW
  640. RETURN
  641. *
  642. * End of CGBSVX
  643. *
  644. END