You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztbsvf.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. SUBROUTINE ZTBSVF(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
  2. * .. Scalar Arguments ..
  3. INTEGER INCX,K,LDA,N
  4. CHARACTER DIAG,TRANS,UPLO
  5. * ..
  6. * .. Array Arguments ..
  7. DOUBLE COMPLEX A(LDA,*),X(*)
  8. * ..
  9. *
  10. * Purpose
  11. * =======
  12. *
  13. * ZTBSV solves one of the systems of equations
  14. *
  15. * A*x = b, or A'*x = b, or conjg( A' )*x = b,
  16. *
  17. * where b and x are n element vectors and A is an n by n unit, or
  18. * non-unit, upper or lower triangular band matrix, with ( k + 1 )
  19. * diagonals.
  20. *
  21. * No test for singularity or near-singularity is included in this
  22. * routine. Such tests must be performed before calling this routine.
  23. *
  24. * Arguments
  25. * ==========
  26. *
  27. * UPLO - CHARACTER*1.
  28. * On entry, UPLO specifies whether the matrix is an upper or
  29. * lower triangular matrix as follows:
  30. *
  31. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  32. *
  33. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  34. *
  35. * Unchanged on exit.
  36. *
  37. * TRANS - CHARACTER*1.
  38. * On entry, TRANS specifies the equations to be solved as
  39. * follows:
  40. *
  41. * TRANS = 'N' or 'n' A*x = b.
  42. *
  43. * TRANS = 'T' or 't' A'*x = b.
  44. *
  45. * TRANS = 'C' or 'c' conjg( A' )*x = b.
  46. *
  47. * Unchanged on exit.
  48. *
  49. * DIAG - CHARACTER*1.
  50. * On entry, DIAG specifies whether or not A is unit
  51. * triangular as follows:
  52. *
  53. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  54. *
  55. * DIAG = 'N' or 'n' A is not assumed to be unit
  56. * triangular.
  57. *
  58. * Unchanged on exit.
  59. *
  60. * N - INTEGER.
  61. * On entry, N specifies the order of the matrix A.
  62. * N must be at least zero.
  63. * Unchanged on exit.
  64. *
  65. * K - INTEGER.
  66. * On entry with UPLO = 'U' or 'u', K specifies the number of
  67. * super-diagonals of the matrix A.
  68. * On entry with UPLO = 'L' or 'l', K specifies the number of
  69. * sub-diagonals of the matrix A.
  70. * K must satisfy 0 .le. K.
  71. * Unchanged on exit.
  72. *
  73. * A - COMPLEX*16 array of DIMENSION ( LDA, n ).
  74. * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  75. * by n part of the array A must contain the upper triangular
  76. * band part of the matrix of coefficients, supplied column by
  77. * column, with the leading diagonal of the matrix in row
  78. * ( k + 1 ) of the array, the first super-diagonal starting at
  79. * position 2 in row k, and so on. The top left k by k triangle
  80. * of the array A is not referenced.
  81. * The following program segment will transfer an upper
  82. * triangular band matrix from conventional full matrix storage
  83. * to band storage:
  84. *
  85. * DO 20, J = 1, N
  86. * M = K + 1 - J
  87. * DO 10, I = MAX( 1, J - K ), J
  88. * A( M + I, J ) = matrix( I, J )
  89. * 10 CONTINUE
  90. * 20 CONTINUE
  91. *
  92. * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  93. * by n part of the array A must contain the lower triangular
  94. * band part of the matrix of coefficients, supplied column by
  95. * column, with the leading diagonal of the matrix in row 1 of
  96. * the array, the first sub-diagonal starting at position 1 in
  97. * row 2, and so on. The bottom right k by k triangle of the
  98. * array A is not referenced.
  99. * The following program segment will transfer a lower
  100. * triangular band matrix from conventional full matrix storage
  101. * to band storage:
  102. *
  103. * DO 20, J = 1, N
  104. * M = 1 - J
  105. * DO 10, I = J, MIN( N, J + K )
  106. * A( M + I, J ) = matrix( I, J )
  107. * 10 CONTINUE
  108. * 20 CONTINUE
  109. *
  110. * Note that when DIAG = 'U' or 'u' the elements of the array A
  111. * corresponding to the diagonal elements of the matrix are not
  112. * referenced, but are assumed to be unity.
  113. * Unchanged on exit.
  114. *
  115. * LDA - INTEGER.
  116. * On entry, LDA specifies the first dimension of A as declared
  117. * in the calling (sub) program. LDA must be at least
  118. * ( k + 1 ).
  119. * Unchanged on exit.
  120. *
  121. * X - COMPLEX*16 array of dimension at least
  122. * ( 1 + ( n - 1 )*abs( INCX ) ).
  123. * Before entry, the incremented array X must contain the n
  124. * element right-hand side vector b. On exit, X is overwritten
  125. * with the solution vector x.
  126. *
  127. * INCX - INTEGER.
  128. * On entry, INCX specifies the increment for the elements of
  129. * X. INCX must not be zero.
  130. * Unchanged on exit.
  131. *
  132. *
  133. * Level 2 Blas routine.
  134. *
  135. * -- Written on 22-October-1986.
  136. * Jack Dongarra, Argonne National Lab.
  137. * Jeremy Du Croz, Nag Central Office.
  138. * Sven Hammarling, Nag Central Office.
  139. * Richard Hanson, Sandia National Labs.
  140. *
  141. *
  142. * .. Parameters ..
  143. DOUBLE COMPLEX ZERO
  144. PARAMETER (ZERO= (0.0D+0,0.0D+0))
  145. * ..
  146. * .. Local Scalars ..
  147. DOUBLE COMPLEX TEMP
  148. INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
  149. LOGICAL NOCONJ,NOUNIT
  150. * ..
  151. * .. External Functions ..
  152. LOGICAL LSAME
  153. EXTERNAL LSAME
  154. * ..
  155. * .. External Subroutines ..
  156. EXTERNAL XERBLA
  157. * ..
  158. * .. Intrinsic Functions ..
  159. INTRINSIC DCONJG,MAX,MIN
  160. * ..
  161. *
  162. * Test the input parameters.
  163. *
  164. INFO = 0
  165. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  166. INFO = 1
  167. ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  168. + .NOT.LSAME(TRANS,'C')) THEN
  169. INFO = 2
  170. ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  171. INFO = 3
  172. ELSE IF (N.LT.0) THEN
  173. INFO = 4
  174. ELSE IF (K.LT.0) THEN
  175. INFO = 5
  176. ELSE IF (LDA.LT. (K+1)) THEN
  177. INFO = 7
  178. ELSE IF (INCX.EQ.0) THEN
  179. INFO = 9
  180. END IF
  181. IF (INFO.NE.0) THEN
  182. CALL XERBLA('ZTBSV ',INFO)
  183. RETURN
  184. END IF
  185. *
  186. * Quick return if possible.
  187. *
  188. IF (N.EQ.0) RETURN
  189. *
  190. NOCONJ = LSAME(TRANS,'T')
  191. NOUNIT = LSAME(DIAG,'N')
  192. *
  193. * Set up the start point in X if the increment is not unity. This
  194. * will be ( N - 1 )*INCX too small for descending loops.
  195. *
  196. IF (INCX.LE.0) THEN
  197. KX = 1 - (N-1)*INCX
  198. ELSE IF (INCX.NE.1) THEN
  199. KX = 1
  200. END IF
  201. *
  202. * Start the operations. In this version the elements of A are
  203. * accessed by sequentially with one pass through A.
  204. *
  205. IF (LSAME(TRANS,'N')) THEN
  206. *
  207. * Form x := inv( A )*x.
  208. *
  209. IF (LSAME(UPLO,'U')) THEN
  210. KPLUS1 = K + 1
  211. IF (INCX.EQ.1) THEN
  212. DO 20 J = N,1,-1
  213. IF (X(J).NE.ZERO) THEN
  214. L = KPLUS1 - J
  215. IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
  216. TEMP = X(J)
  217. DO 10 I = J - 1,MAX(1,J-K),-1
  218. X(I) = X(I) - TEMP*A(L+I,J)
  219. 10 CONTINUE
  220. END IF
  221. 20 CONTINUE
  222. ELSE
  223. KX = KX + (N-1)*INCX
  224. JX = KX
  225. DO 40 J = N,1,-1
  226. KX = KX - INCX
  227. IF (X(JX).NE.ZERO) THEN
  228. IX = KX
  229. L = KPLUS1 - J
  230. IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
  231. TEMP = X(JX)
  232. DO 30 I = J - 1,MAX(1,J-K),-1
  233. X(IX) = X(IX) - TEMP*A(L+I,J)
  234. IX = IX - INCX
  235. 30 CONTINUE
  236. END IF
  237. JX = JX - INCX
  238. 40 CONTINUE
  239. END IF
  240. ELSE
  241. IF (INCX.EQ.1) THEN
  242. DO 60 J = 1,N
  243. IF (X(J).NE.ZERO) THEN
  244. L = 1 - J
  245. IF (NOUNIT) X(J) = X(J)/A(1,J)
  246. TEMP = X(J)
  247. DO 50 I = J + 1,MIN(N,J+K)
  248. X(I) = X(I) - TEMP*A(L+I,J)
  249. 50 CONTINUE
  250. END IF
  251. 60 CONTINUE
  252. ELSE
  253. JX = KX
  254. DO 80 J = 1,N
  255. KX = KX + INCX
  256. IF (X(JX).NE.ZERO) THEN
  257. IX = KX
  258. L = 1 - J
  259. IF (NOUNIT) X(JX) = X(JX)/A(1,J)
  260. TEMP = X(JX)
  261. DO 70 I = J + 1,MIN(N,J+K)
  262. X(IX) = X(IX) - TEMP*A(L+I,J)
  263. IX = IX + INCX
  264. 70 CONTINUE
  265. END IF
  266. JX = JX + INCX
  267. 80 CONTINUE
  268. END IF
  269. END IF
  270. ELSE
  271. *
  272. * Form x := inv( A' )*x or x := inv( conjg( A') )*x.
  273. *
  274. IF (LSAME(UPLO,'U')) THEN
  275. KPLUS1 = K + 1
  276. IF (INCX.EQ.1) THEN
  277. DO 110 J = 1,N
  278. TEMP = X(J)
  279. L = KPLUS1 - J
  280. IF (NOCONJ) THEN
  281. DO 90 I = MAX(1,J-K),J - 1
  282. TEMP = TEMP - A(L+I,J)*X(I)
  283. 90 CONTINUE
  284. IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
  285. ELSE
  286. DO 100 I = MAX(1,J-K),J - 1
  287. TEMP = TEMP - DCONJG(A(L+I,J))*X(I)
  288. 100 CONTINUE
  289. IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J))
  290. END IF
  291. X(J) = TEMP
  292. 110 CONTINUE
  293. ELSE
  294. JX = KX
  295. DO 140 J = 1,N
  296. TEMP = X(JX)
  297. IX = KX
  298. L = KPLUS1 - J
  299. IF (NOCONJ) THEN
  300. DO 120 I = MAX(1,J-K),J - 1
  301. TEMP = TEMP - A(L+I,J)*X(IX)
  302. IX = IX + INCX
  303. 120 CONTINUE
  304. IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
  305. ELSE
  306. DO 130 I = MAX(1,J-K),J - 1
  307. TEMP = TEMP - DCONJG(A(L+I,J))*X(IX)
  308. IX = IX + INCX
  309. 130 CONTINUE
  310. IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J))
  311. END IF
  312. X(JX) = TEMP
  313. JX = JX + INCX
  314. IF (J.GT.K) KX = KX + INCX
  315. 140 CONTINUE
  316. END IF
  317. ELSE
  318. IF (INCX.EQ.1) THEN
  319. DO 170 J = N,1,-1
  320. TEMP = X(J)
  321. L = 1 - J
  322. IF (NOCONJ) THEN
  323. DO 150 I = MIN(N,J+K),J + 1,-1
  324. TEMP = TEMP - A(L+I,J)*X(I)
  325. 150 CONTINUE
  326. IF (NOUNIT) TEMP = TEMP/A(1,J)
  327. ELSE
  328. DO 160 I = MIN(N,J+K),J + 1,-1
  329. TEMP = TEMP - DCONJG(A(L+I,J))*X(I)
  330. 160 CONTINUE
  331. IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J))
  332. END IF
  333. X(J) = TEMP
  334. 170 CONTINUE
  335. ELSE
  336. KX = KX + (N-1)*INCX
  337. JX = KX
  338. DO 200 J = N,1,-1
  339. TEMP = X(JX)
  340. IX = KX
  341. L = 1 - J
  342. IF (NOCONJ) THEN
  343. DO 180 I = MIN(N,J+K),J + 1,-1
  344. TEMP = TEMP - A(L+I,J)*X(IX)
  345. IX = IX - INCX
  346. 180 CONTINUE
  347. IF (NOUNIT) TEMP = TEMP/A(1,J)
  348. ELSE
  349. DO 190 I = MIN(N,J+K),J + 1,-1
  350. TEMP = TEMP - DCONJG(A(L+I,J))*X(IX)
  351. IX = IX - INCX
  352. 190 CONTINUE
  353. IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J))
  354. END IF
  355. X(JX) = TEMP
  356. JX = JX - INCX
  357. IF ((N-J).GE.K) KX = KX - INCX
  358. 200 CONTINUE
  359. END IF
  360. END IF
  361. END IF
  362. *
  363. RETURN
  364. *
  365. * End of ZTBSV .
  366. *
  367. END