You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztbmvf.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. SUBROUTINE ZTBMVF( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX )
  2. * .. Scalar Arguments ..
  3. INTEGER INCX, K, LDA, N
  4. CHARACTER*1 DIAG, TRANS, UPLO
  5. * .. Array Arguments ..
  6. COMPLEX*16 A( LDA, * ), X( * )
  7. * ..
  8. *
  9. * Purpose
  10. * =======
  11. *
  12. * ZTBMV performs one of the matrix-vector operations
  13. *
  14. * x := A*x, or x := A'*x, or x := conjg( A' )*x,
  15. *
  16. * where x is an n element vector and A is an n by n unit, or non-unit,
  17. * upper or lower triangular band matrix, with ( k + 1 ) diagonals.
  18. *
  19. * Parameters
  20. * ==========
  21. *
  22. * UPLO - CHARACTER*1.
  23. * On entry, UPLO specifies whether the matrix is an upper or
  24. * lower triangular matrix as follows:
  25. *
  26. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  27. *
  28. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  29. *
  30. * Unchanged on exit.
  31. *
  32. * TRANS - CHARACTER*1.
  33. * On entry, TRANS specifies the operation to be performed as
  34. * follows:
  35. *
  36. * TRANS = 'N' or 'n' x := A*x.
  37. *
  38. * TRANS = 'T' or 't' x := A'*x.
  39. *
  40. * TRANS = 'C' or 'c' x := conjg( A' )*x.
  41. *
  42. * Unchanged on exit.
  43. *
  44. * DIAG - CHARACTER*1.
  45. * On entry, DIAG specifies whether or not A is unit
  46. * triangular as follows:
  47. *
  48. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  49. *
  50. * DIAG = 'N' or 'n' A is not assumed to be unit
  51. * triangular.
  52. *
  53. * Unchanged on exit.
  54. *
  55. * N - INTEGER.
  56. * On entry, N specifies the order of the matrix A.
  57. * N must be at least zero.
  58. * Unchanged on exit.
  59. *
  60. * K - INTEGER.
  61. * On entry with UPLO = 'U' or 'u', K specifies the number of
  62. * super-diagonals of the matrix A.
  63. * On entry with UPLO = 'L' or 'l', K specifies the number of
  64. * sub-diagonals of the matrix A.
  65. * K must satisfy 0 .le. K.
  66. * Unchanged on exit.
  67. *
  68. * A - COMPLEX*16 array of DIMENSION ( LDA, n ).
  69. * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  70. * by n part of the array A must contain the upper triangular
  71. * band part of the matrix of coefficients, supplied column by
  72. * column, with the leading diagonal of the matrix in row
  73. * ( k + 1 ) of the array, the first super-diagonal starting at
  74. * position 2 in row k, and so on. The top left k by k triangle
  75. * of the array A is not referenced.
  76. * The following program segment will transfer an upper
  77. * triangular band matrix from conventional full matrix storage
  78. * to band storage:
  79. *
  80. * DO 20, J = 1, N
  81. * M = K + 1 - J
  82. * DO 10, I = MAX( 1, J - K ), J
  83. * A( M + I, J ) = matrix( I, J )
  84. * 10 CONTINUE
  85. * 20 CONTINUE
  86. *
  87. * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  88. * by n part of the array A must contain the lower triangular
  89. * band part of the matrix of coefficients, supplied column by
  90. * column, with the leading diagonal of the matrix in row 1 of
  91. * the array, the first sub-diagonal starting at position 1 in
  92. * row 2, and so on. The bottom right k by k triangle of the
  93. * array A is not referenced.
  94. * The following program segment will transfer a lower
  95. * triangular band matrix from conventional full matrix storage
  96. * to band storage:
  97. *
  98. * DO 20, J = 1, N
  99. * M = 1 - J
  100. * DO 10, I = J, MIN( N, J + K )
  101. * A( M + I, J ) = matrix( I, J )
  102. * 10 CONTINUE
  103. * 20 CONTINUE
  104. *
  105. * Note that when DIAG = 'U' or 'u' the elements of the array A
  106. * corresponding to the diagonal elements of the matrix are not
  107. * referenced, but are assumed to be unity.
  108. * Unchanged on exit.
  109. *
  110. * LDA - INTEGER.
  111. * On entry, LDA specifies the first dimension of A as declared
  112. * in the calling (sub) program. LDA must be at least
  113. * ( k + 1 ).
  114. * Unchanged on exit.
  115. *
  116. * X - COMPLEX*16 array of dimension at least
  117. * ( 1 + ( n - 1 )*abs( INCX ) ).
  118. * Before entry, the incremented array X must contain the n
  119. * element vector x. On exit, X is overwritten with the
  120. * tranformed vector x.
  121. *
  122. * INCX - INTEGER.
  123. * On entry, INCX specifies the increment for the elements of
  124. * X. INCX must not be zero.
  125. * Unchanged on exit.
  126. *
  127. *
  128. * Level 2 Blas routine.
  129. *
  130. * -- Written on 22-October-1986.
  131. * Jack Dongarra, Argonne National Lab.
  132. * Jeremy Du Croz, Nag Central Office.
  133. * Sven Hammarling, Nag Central Office.
  134. * Richard Hanson, Sandia National Labs.
  135. *
  136. *
  137. * .. Parameters ..
  138. COMPLEX*16 ZERO
  139. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  140. * .. Local Scalars ..
  141. COMPLEX*16 TEMP
  142. INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L
  143. LOGICAL NOCONJ, NOUNIT
  144. * .. External Functions ..
  145. LOGICAL LSAME
  146. EXTERNAL LSAME
  147. * .. External Subroutines ..
  148. EXTERNAL XERBLA
  149. * .. Intrinsic Functions ..
  150. INTRINSIC DCONJG, MAX, MIN
  151. * ..
  152. * .. Executable Statements ..
  153. *
  154. * Test the input parameters.
  155. *
  156. INFO = 0
  157. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  158. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  159. INFO = 1
  160. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  161. $ .NOT.LSAME( TRANS, 'T' ).AND.
  162. $ .NOT.LSAME( TRANS, 'R' ).AND.
  163. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  164. INFO = 2
  165. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  166. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  167. INFO = 3
  168. ELSE IF( N.LT.0 )THEN
  169. INFO = 4
  170. ELSE IF( K.LT.0 )THEN
  171. INFO = 5
  172. ELSE IF( LDA.LT.( K + 1 ) )THEN
  173. INFO = 7
  174. ELSE IF( INCX.EQ.0 )THEN
  175. INFO = 9
  176. END IF
  177. IF( INFO.NE.0 )THEN
  178. CALL XERBLA( 'ZTBMV ', INFO )
  179. RETURN
  180. END IF
  181. *
  182. * Quick return if possible.
  183. *
  184. IF( N.EQ.0 )
  185. $ RETURN
  186. *
  187. NOCONJ = LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
  188. NOUNIT = LSAME( DIAG , 'N' )
  189. *
  190. * Set up the start point in X if the increment is not unity. This
  191. * will be ( N - 1 )*INCX too small for descending loops.
  192. *
  193. IF( INCX.LE.0 )THEN
  194. KX = 1 - ( N - 1 )*INCX
  195. ELSE IF( INCX.NE.1 )THEN
  196. KX = 1
  197. END IF
  198. *
  199. * Start the operations. In this version the elements of A are
  200. * accessed sequentially with one pass through A.
  201. *
  202. IF( LSAME( TRANS, 'N' ).OR.LSAME( TRANS, 'R' ) )THEN
  203. *
  204. * Form x := A*x.
  205. *
  206. IF( LSAME( UPLO, 'U' ) )THEN
  207. KPLUS1 = K + 1
  208. IF( INCX.EQ.1 )THEN
  209. DO 20, J = 1, N
  210. IF( X( J ).NE.ZERO )THEN
  211. TEMP = X( J )
  212. L = KPLUS1 - J
  213. DO 10, I = MAX( 1, J - K ), J - 1
  214. X( I ) = X( I ) + TEMP*A( L + I, J )
  215. 10 CONTINUE
  216. IF( NOUNIT )
  217. $ X( J ) = X( J )*A( KPLUS1, J )
  218. END IF
  219. 20 CONTINUE
  220. ELSE
  221. JX = KX
  222. DO 40, J = 1, N
  223. IF( X( JX ).NE.ZERO )THEN
  224. TEMP = X( JX )
  225. IX = KX
  226. L = KPLUS1 - J
  227. DO 30, I = MAX( 1, J - K ), J - 1
  228. X( IX ) = X( IX ) + TEMP*A( L + I, J )
  229. IX = IX + INCX
  230. 30 CONTINUE
  231. IF( NOUNIT )
  232. $ X( JX ) = X( JX )*A( KPLUS1, J )
  233. END IF
  234. JX = JX + INCX
  235. IF( J.GT.K )
  236. $ KX = KX + INCX
  237. 40 CONTINUE
  238. END IF
  239. ELSE
  240. IF( INCX.EQ.1 )THEN
  241. DO 60, J = N, 1, -1
  242. IF( X( J ).NE.ZERO )THEN
  243. TEMP = X( J )
  244. L = 1 - J
  245. DO 50, I = MIN( N, J + K ), J + 1, -1
  246. X( I ) = X( I ) + TEMP*A( L + I, J )
  247. 50 CONTINUE
  248. IF( NOUNIT )
  249. $ X( J ) = X( J )*A( 1, J )
  250. END IF
  251. 60 CONTINUE
  252. ELSE
  253. KX = KX + ( N - 1 )*INCX
  254. JX = KX
  255. DO 80, J = N, 1, -1
  256. IF( X( JX ).NE.ZERO )THEN
  257. TEMP = X( JX )
  258. IX = KX
  259. L = 1 - J
  260. DO 70, I = MIN( N, J + K ), J + 1, -1
  261. X( IX ) = X( IX ) + TEMP*A( L + I, J )
  262. IX = IX - INCX
  263. 70 CONTINUE
  264. IF( NOUNIT )
  265. $ X( JX ) = X( JX )*A( 1, J )
  266. END IF
  267. JX = JX - INCX
  268. IF( ( N - J ).GE.K )
  269. $ KX = KX - INCX
  270. 80 CONTINUE
  271. END IF
  272. END IF
  273. ELSE
  274. *
  275. * Form x := A'*x or x := conjg( A' )*x.
  276. *
  277. IF( LSAME( UPLO, 'U' ) )THEN
  278. KPLUS1 = K + 1
  279. IF( INCX.EQ.1 )THEN
  280. DO 110, J = N, 1, -1
  281. TEMP = X( J )
  282. L = KPLUS1 - J
  283. IF( NOCONJ )THEN
  284. IF( NOUNIT )
  285. $ TEMP = TEMP*A( KPLUS1, J )
  286. DO 90, I = J - 1, MAX( 1, J - K ), -1
  287. TEMP = TEMP + A( L + I, J )*X( I )
  288. 90 CONTINUE
  289. ELSE
  290. IF( NOUNIT )
  291. $ TEMP = TEMP*DCONJG( A( KPLUS1, J ) )
  292. DO 100, I = J - 1, MAX( 1, J - K ), -1
  293. TEMP = TEMP + DCONJG( A( L + I, J ) )*X( I )
  294. 100 CONTINUE
  295. END IF
  296. X( J ) = TEMP
  297. 110 CONTINUE
  298. ELSE
  299. KX = KX + ( N - 1 )*INCX
  300. JX = KX
  301. DO 140, J = N, 1, -1
  302. TEMP = X( JX )
  303. KX = KX - INCX
  304. IX = KX
  305. L = KPLUS1 - J
  306. IF( NOCONJ )THEN
  307. IF( NOUNIT )
  308. $ TEMP = TEMP*A( KPLUS1, J )
  309. DO 120, I = J - 1, MAX( 1, J - K ), -1
  310. TEMP = TEMP + A( L + I, J )*X( IX )
  311. IX = IX - INCX
  312. 120 CONTINUE
  313. ELSE
  314. IF( NOUNIT )
  315. $ TEMP = TEMP*DCONJG( A( KPLUS1, J ) )
  316. DO 130, I = J - 1, MAX( 1, J - K ), -1
  317. TEMP = TEMP + DCONJG( A( L + I, J ) )*X( IX )
  318. IX = IX - INCX
  319. 130 CONTINUE
  320. END IF
  321. X( JX ) = TEMP
  322. JX = JX - INCX
  323. 140 CONTINUE
  324. END IF
  325. ELSE
  326. IF( INCX.EQ.1 )THEN
  327. DO 170, J = 1, N
  328. TEMP = X( J )
  329. L = 1 - J
  330. IF( NOCONJ )THEN
  331. IF( NOUNIT )
  332. $ TEMP = TEMP*A( 1, J )
  333. DO 150, I = J + 1, MIN( N, J + K )
  334. TEMP = TEMP + A( L + I, J )*X( I )
  335. 150 CONTINUE
  336. ELSE
  337. IF( NOUNIT )
  338. $ TEMP = TEMP*DCONJG( A( 1, J ) )
  339. DO 160, I = J + 1, MIN( N, J + K )
  340. TEMP = TEMP + DCONJG( A( L + I, J ) )*X( I )
  341. 160 CONTINUE
  342. END IF
  343. X( J ) = TEMP
  344. 170 CONTINUE
  345. ELSE
  346. JX = KX
  347. DO 200, J = 1, N
  348. TEMP = X( JX )
  349. KX = KX + INCX
  350. IX = KX
  351. L = 1 - J
  352. IF( NOCONJ )THEN
  353. IF( NOUNIT )
  354. $ TEMP = TEMP*A( 1, J )
  355. DO 180, I = J + 1, MIN( N, J + K )
  356. TEMP = TEMP + A( L + I, J )*X( IX )
  357. IX = IX + INCX
  358. 180 CONTINUE
  359. ELSE
  360. IF( NOUNIT )
  361. $ TEMP = TEMP*DCONJG( A( 1, J ) )
  362. DO 190, I = J + 1, MIN( N, J + K )
  363. TEMP = TEMP + DCONJG( A( L + I, J ) )*X( IX )
  364. IX = IX + INCX
  365. 190 CONTINUE
  366. END IF
  367. X( JX ) = TEMP
  368. JX = JX + INCX
  369. 200 CONTINUE
  370. END IF
  371. END IF
  372. END IF
  373. *
  374. RETURN
  375. *
  376. * End of ZTBMV .
  377. *
  378. END