You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chemvf.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. SUBROUTINE CHEMVF ( UPLO, N, ALPHA, A, LDA, X, INCX,
  2. $ BETA, Y, INCY )
  3. * .. Scalar Arguments ..
  4. COMPLEX ALPHA, BETA
  5. INTEGER INCX, INCY, LDA, N
  6. CHARACTER*1 UPLO
  7. * .. Array Arguments ..
  8. COMPLEX A( LDA, * ), X( * ), Y( * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * CHEMV performs the matrix-vector operation
  15. *
  16. * y := alpha*A*x + beta*y,
  17. *
  18. * where alpha and beta are scalars, x and y are n element vectors and
  19. * A is an n by n hermitian matrix.
  20. *
  21. * Parameters
  22. * ==========
  23. *
  24. * UPLO - CHARACTER*1.
  25. * On entry, UPLO specifies whether the upper or lower
  26. * triangular part of the array A is to be referenced as
  27. * follows:
  28. *
  29. * UPLO = 'U' or 'u' Only the upper triangular part of A
  30. * is to be referenced.
  31. *
  32. * UPLO = 'L' or 'l' Only the lower triangular part of A
  33. * is to be referenced.
  34. *
  35. * Unchanged on exit.
  36. *
  37. * N - INTEGER.
  38. * On entry, N specifies the order of the matrix A.
  39. * N must be at least zero.
  40. * Unchanged on exit.
  41. *
  42. * ALPHA - COMPLEX .
  43. * On entry, ALPHA specifies the scalar alpha.
  44. * Unchanged on exit.
  45. *
  46. * A - COMPLEX array of DIMENSION ( LDA, n ).
  47. * Before entry with UPLO = 'U' or 'u', the leading n by n
  48. * upper triangular part of the array A must contain the upper
  49. * triangular part of the hermitian matrix and the strictly
  50. * lower triangular part of A is not referenced.
  51. * Before entry with UPLO = 'L' or 'l', the leading n by n
  52. * lower triangular part of the array A must contain the lower
  53. * triangular part of the hermitian matrix and the strictly
  54. * upper triangular part of A is not referenced.
  55. * Note that the imaginary parts of the diagonal elements need
  56. * not be set and are assumed to be zero.
  57. * Unchanged on exit.
  58. *
  59. * LDA - INTEGER.
  60. * On entry, LDA specifies the first dimension of A as declared
  61. * in the calling (sub) program. LDA must be at least
  62. * max( 1, n ).
  63. * Unchanged on exit.
  64. *
  65. * X - COMPLEX array of dimension at least
  66. * ( 1 + ( n - 1 )*abs( INCX ) ).
  67. * Before entry, the incremented array X must contain the n
  68. * element vector x.
  69. * Unchanged on exit.
  70. *
  71. * INCX - INTEGER.
  72. * On entry, INCX specifies the increment for the elements of
  73. * X. INCX must not be zero.
  74. * Unchanged on exit.
  75. *
  76. * BETA - COMPLEX .
  77. * On entry, BETA specifies the scalar beta. When BETA is
  78. * supplied as zero then Y need not be set on input.
  79. * Unchanged on exit.
  80. *
  81. * Y - COMPLEX array of dimension at least
  82. * ( 1 + ( n - 1 )*abs( INCY ) ).
  83. * Before entry, the incremented array Y must contain the n
  84. * element vector y. On exit, Y is overwritten by the updated
  85. * vector y.
  86. *
  87. * INCY - INTEGER.
  88. * On entry, INCY specifies the increment for the elements of
  89. * Y. INCY must not be zero.
  90. * Unchanged on exit.
  91. *
  92. *
  93. * Level 2 Blas routine.
  94. *
  95. * -- Written on 22-October-1986.
  96. * Jack Dongarra, Argonne National Lab.
  97. * Jeremy Du Croz, Nag Central Office.
  98. * Sven Hammarling, Nag Central Office.
  99. * Richard Hanson, Sandia National Labs.
  100. *
  101. *
  102. * .. Parameters ..
  103. COMPLEX ONE
  104. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  105. COMPLEX ZERO
  106. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  107. * .. Local Scalars ..
  108. COMPLEX TEMP1, TEMP2
  109. INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
  110. * .. External Functions ..
  111. LOGICAL LSAME
  112. EXTERNAL LSAME
  113. * .. External Subroutines ..
  114. EXTERNAL XERBLA
  115. * .. Intrinsic Functions ..
  116. INTRINSIC CONJG, MAX, REAL
  117. * ..
  118. * .. Executable Statements ..
  119. *
  120. * Test the input parameters.
  121. *
  122. INFO = 0
  123. IF ( .NOT.LSAME( UPLO, 'U' ).AND.
  124. $ .NOT.LSAME( UPLO, 'L' ).AND.
  125. $ .NOT.LSAME( UPLO, 'V' ).AND.
  126. $ .NOT.LSAME( UPLO, 'M' ))THEN
  127. INFO = 1
  128. ELSE IF( N.LT.0 )THEN
  129. INFO = 2
  130. ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  131. INFO = 5
  132. ELSE IF( INCX.EQ.0 )THEN
  133. INFO = 7
  134. ELSE IF( INCY.EQ.0 )THEN
  135. INFO = 10
  136. END IF
  137. IF( INFO.NE.0 )THEN
  138. CALL XERBLA( 'CHEMV ', INFO )
  139. RETURN
  140. END IF
  141. *
  142. * Quick return if possible.
  143. *
  144. IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  145. $ RETURN
  146. *
  147. * Set up the start points in X and Y.
  148. *
  149. IF( INCX.GT.0 )THEN
  150. KX = 1
  151. ELSE
  152. KX = 1 - ( N - 1 )*INCX
  153. END IF
  154. IF( INCY.GT.0 )THEN
  155. KY = 1
  156. ELSE
  157. KY = 1 - ( N - 1 )*INCY
  158. END IF
  159. *
  160. * Start the operations. In this version the elements of A are
  161. * accessed sequentially with one pass through the triangular part
  162. * of A.
  163. *
  164. * First form y := beta*y.
  165. *
  166. IF( BETA.NE.ONE )THEN
  167. IF( INCY.EQ.1 )THEN
  168. IF( BETA.EQ.ZERO )THEN
  169. DO 10, I = 1, N
  170. Y( I ) = ZERO
  171. 10 CONTINUE
  172. ELSE
  173. DO 20, I = 1, N
  174. Y( I ) = BETA*Y( I )
  175. 20 CONTINUE
  176. END IF
  177. ELSE
  178. IY = KY
  179. IF( BETA.EQ.ZERO )THEN
  180. DO 30, I = 1, N
  181. Y( IY ) = ZERO
  182. IY = IY + INCY
  183. 30 CONTINUE
  184. ELSE
  185. DO 40, I = 1, N
  186. Y( IY ) = BETA*Y( IY )
  187. IY = IY + INCY
  188. 40 CONTINUE
  189. END IF
  190. END IF
  191. END IF
  192. IF( ALPHA.EQ.ZERO )
  193. $ RETURN
  194. IF( LSAME( UPLO, 'U' ) )THEN
  195. *
  196. * Form y when A is stored in upper triangle.
  197. *
  198. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  199. DO 60, J = 1, N
  200. TEMP1 = ALPHA*X( J )
  201. TEMP2 = ZERO
  202. DO 50, I = 1, J - 1
  203. Y( I ) = Y( I ) + TEMP1*A( I, J )
  204. TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( I )
  205. 50 CONTINUE
  206. Y( J ) = Y( J ) + TEMP1*REAL( A( J, J ) ) + ALPHA*TEMP2
  207. 60 CONTINUE
  208. ELSE
  209. JX = KX
  210. JY = KY
  211. DO 80, J = 1, N
  212. TEMP1 = ALPHA*X( JX )
  213. TEMP2 = ZERO
  214. IX = KX
  215. IY = KY
  216. DO 70, I = 1, J - 1
  217. Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  218. TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( IX )
  219. IX = IX + INCX
  220. IY = IY + INCY
  221. 70 CONTINUE
  222. Y( JY ) = Y( JY ) + TEMP1*REAL( A( J, J ) ) + ALPHA*TEMP2
  223. JX = JX + INCX
  224. JY = JY + INCY
  225. 80 CONTINUE
  226. END IF
  227. RETURN
  228. ENDIF
  229. IF( LSAME( UPLO, 'L' ) )THEN
  230. *
  231. * Form y when A is stored in lower triangle.
  232. *
  233. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  234. DO 100, J = 1, N
  235. TEMP1 = ALPHA*X( J )
  236. TEMP2 = ZERO
  237. Y( J ) = Y( J ) + TEMP1*REAL( A( J, J ) )
  238. DO 90, I = J + 1, N
  239. Y( I ) = Y( I ) + TEMP1*A( I, J )
  240. TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( I )
  241. 90 CONTINUE
  242. Y( J ) = Y( J ) + ALPHA*TEMP2
  243. 100 CONTINUE
  244. ELSE
  245. JX = KX
  246. JY = KY
  247. DO 120, J = 1, N
  248. TEMP1 = ALPHA*X( JX )
  249. TEMP2 = ZERO
  250. Y( JY ) = Y( JY ) + TEMP1*REAL( A( J, J ) )
  251. IX = JX
  252. IY = JY
  253. DO 110, I = J + 1, N
  254. IX = IX + INCX
  255. IY = IY + INCY
  256. Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  257. TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( IX )
  258. 110 CONTINUE
  259. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  260. JX = JX + INCX
  261. JY = JY + INCY
  262. 120 CONTINUE
  263. END IF
  264. RETURN
  265. END IF
  266. IF( LSAME( UPLO, 'V' ) )THEN
  267. *
  268. * Form y when A is stored in upper triangle.
  269. *
  270. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  271. DO 160, J = 1, N
  272. TEMP1 = ALPHA*X( J )
  273. TEMP2 = ZERO
  274. DO 150, I = 1, J - 1
  275. Y( I ) = Y( I ) + TEMP1* CONJG(A( I, J ))
  276. TEMP2 = TEMP2 + A( I, J )*X( I )
  277. 150 CONTINUE
  278. Y( J ) = Y( J ) + TEMP1*REAL( A( J, J ) ) + ALPHA*TEMP2
  279. 160 CONTINUE
  280. ELSE
  281. JX = KX
  282. JY = KY
  283. DO 180, J = 1, N
  284. TEMP1 = ALPHA*X( JX )
  285. TEMP2 = ZERO
  286. IX = KX
  287. IY = KY
  288. DO 170, I = 1, J - 1
  289. Y( IY ) = Y( IY ) + TEMP1* CONJG(A( I, J ))
  290. TEMP2 = TEMP2 + A( I, J )*X( IX )
  291. IX = IX + INCX
  292. IY = IY + INCY
  293. 170 CONTINUE
  294. Y( JY ) = Y( JY ) + TEMP1*REAL( A( J, J ) ) + ALPHA*TEMP2
  295. JX = JX + INCX
  296. JY = JY + INCY
  297. 180 CONTINUE
  298. END IF
  299. RETURN
  300. ENDIF
  301. IF( LSAME( UPLO, 'M' ) )THEN
  302. *
  303. * Form y when A is stored in lower triangle.
  304. *
  305. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  306. DO 200, J = 1, N
  307. TEMP1 = ALPHA*X( J )
  308. TEMP2 = ZERO
  309. Y( J ) = Y( J ) + TEMP1*REAL( A( J, J ) )
  310. DO 190, I = J + 1, N
  311. Y( I ) = Y( I ) + TEMP1*CONJG(A( I, J ))
  312. TEMP2 = TEMP2 + A( I, J )*X( I )
  313. 190 CONTINUE
  314. Y( J ) = Y( J ) + ALPHA*TEMP2
  315. 200 CONTINUE
  316. ELSE
  317. JX = KX
  318. JY = KY
  319. DO 220, J = 1, N
  320. TEMP1 = ALPHA*X( JX )
  321. TEMP2 = ZERO
  322. Y( JY ) = Y( JY ) + TEMP1*REAL( A( J, J ) )
  323. IX = JX
  324. IY = JY
  325. DO 210, I = J + 1, N
  326. IX = IX + INCX
  327. IY = IY + INCY
  328. Y( IY ) = Y( IY ) + TEMP1*CONJG(A( I, J ))
  329. TEMP2 = TEMP2 + A( I, J )*X( IX )
  330. 210 CONTINUE
  331. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  332. JX = JX + INCX
  333. JY = JY + INCY
  334. 220 CONTINUE
  335. END IF
  336. RETURN
  337. END IF
  338. *
  339. *
  340. * End of CHEMV .
  341. *
  342. END