You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgemvf.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. SUBROUTINE CGEMVF ( TRANS, M, N, ALPHA, A, LDA, X, INCX,
  2. $ BETA, Y, INCY )
  3. * .. Scalar Arguments ..
  4. COMPLEX ALPHA, BETA
  5. INTEGER INCX, INCY, LDA, M, N
  6. CHARACTER*1 TRANS
  7. * .. Array Arguments ..
  8. COMPLEX A( LDA, * ), X( * ), Y( * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * CGEMV performs one of the matrix-vector operations
  15. *
  16. * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
  17. *
  18. * y := alpha*conjg( A' )*x + beta*y,
  19. *
  20. * where alpha and beta are scalars, x and y are vectors and A is an
  21. * m by n matrix.
  22. *
  23. * Parameters
  24. * ==========
  25. *
  26. * TRANS - CHARACTER*1.
  27. * On entry, TRANS specifies the operation to be performed as
  28. * follows:
  29. *
  30. * TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
  31. *
  32. * TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
  33. *
  34. * TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
  35. *
  36. * Unchanged on exit.
  37. *
  38. * M - INTEGER.
  39. * On entry, M specifies the number of rows of the matrix A.
  40. * M must be at least zero.
  41. * Unchanged on exit.
  42. *
  43. * N - INTEGER.
  44. * On entry, N specifies the number of columns of the matrix A.
  45. * N must be at least zero.
  46. * Unchanged on exit.
  47. *
  48. * ALPHA - COMPLEX .
  49. * On entry, ALPHA specifies the scalar alpha.
  50. * Unchanged on exit.
  51. *
  52. * A - COMPLEX array of DIMENSION ( LDA, n ).
  53. * Before entry, the leading m by n part of the array A must
  54. * contain the matrix of coefficients.
  55. * Unchanged on exit.
  56. *
  57. * LDA - INTEGER.
  58. * On entry, LDA specifies the first dimension of A as declared
  59. * in the calling (sub) program. LDA must be at least
  60. * max( 1, m ).
  61. * Unchanged on exit.
  62. *
  63. * X - COMPLEX array of DIMENSION at least
  64. * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  65. * and at least
  66. * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  67. * Before entry, the incremented array X must contain the
  68. * vector x.
  69. * Unchanged on exit.
  70. *
  71. * INCX - INTEGER.
  72. * On entry, INCX specifies the increment for the elements of
  73. * X. INCX must not be zero.
  74. * Unchanged on exit.
  75. *
  76. * BETA - COMPLEX .
  77. * On entry, BETA specifies the scalar beta. When BETA is
  78. * supplied as zero then Y need not be set on input.
  79. * Unchanged on exit.
  80. *
  81. * Y - COMPLEX array of DIMENSION at least
  82. * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  83. * and at least
  84. * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  85. * Before entry with BETA non-zero, the incremented array Y
  86. * must contain the vector y. On exit, Y is overwritten by the
  87. * updated vector y.
  88. *
  89. * INCY - INTEGER.
  90. * On entry, INCY specifies the increment for the elements of
  91. * Y. INCY must not be zero.
  92. * Unchanged on exit.
  93. *
  94. *
  95. * Level 2 Blas routine.
  96. *
  97. * -- Written on 22-October-1986.
  98. * Jack Dongarra, Argonne National Lab.
  99. * Jeremy Du Croz, Nag Central Office.
  100. * Sven Hammarling, Nag Central Office.
  101. * Richard Hanson, Sandia National Labs.
  102. *
  103. *
  104. * .. Parameters ..
  105. COMPLEX ONE
  106. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  107. COMPLEX ZERO
  108. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  109. * .. Local Scalars ..
  110. COMPLEX TEMP
  111. INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
  112. LOGICAL NOCONJ, NOTRANS, XCONJ
  113. * .. External Functions ..
  114. LOGICAL LSAME
  115. EXTERNAL LSAME
  116. * .. External Subroutines ..
  117. EXTERNAL XERBLA
  118. * .. Intrinsic Functions ..
  119. INTRINSIC CONJG, MAX
  120. * ..
  121. * .. Executable Statements ..
  122. *
  123. * Test the input parameters.
  124. *
  125. INFO = 0
  126. IF ( .NOT.LSAME( TRANS, 'N' ).AND.
  127. $ .NOT.LSAME( TRANS, 'T' ).AND.
  128. $ .NOT.LSAME( TRANS, 'R' ).AND.
  129. $ .NOT.LSAME( TRANS, 'C' ).AND.
  130. $ .NOT.LSAME( TRANS, 'O' ).AND.
  131. $ .NOT.LSAME( TRANS, 'U' ).AND.
  132. $ .NOT.LSAME( TRANS, 'S' ).AND.
  133. $ .NOT.LSAME( TRANS, 'D' ) )THEN
  134. INFO = 1
  135. ELSE IF( M.LT.0 )THEN
  136. INFO = 2
  137. ELSE IF( N.LT.0 )THEN
  138. INFO = 3
  139. ELSE IF( LDA.LT.MAX( 1, M ) )THEN
  140. INFO = 6
  141. ELSE IF( INCX.EQ.0 )THEN
  142. INFO = 8
  143. ELSE IF( INCY.EQ.0 )THEN
  144. INFO = 11
  145. END IF
  146. IF( INFO.NE.0 )THEN
  147. CALL XERBLA( 'CGEMV ', INFO )
  148. RETURN
  149. END IF
  150. *
  151. * Quick return if possible.
  152. *
  153. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  154. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  155. $ RETURN
  156. *
  157. NOCONJ = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
  158. $ .OR. LSAME( TRANS, 'O' ) .OR. LSAME( TRANS, 'U' ))
  159. NOTRANS = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'R' )
  160. $ .OR. LSAME( TRANS, 'O' ) .OR. LSAME( TRANS, 'S' ))
  161. XCONJ = (LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
  162. $ .OR. LSAME( TRANS, 'R' ) .OR. LSAME( TRANS, 'C' ))
  163. *
  164. * Set LENX and LENY, the lengths of the vectors x and y, and set
  165. * up the start points in X and Y.
  166. *
  167. IF(NOTRANS)THEN
  168. LENX = N
  169. LENY = M
  170. ELSE
  171. LENX = M
  172. LENY = N
  173. END IF
  174. IF( INCX.GT.0 )THEN
  175. KX = 1
  176. ELSE
  177. KX = 1 - ( LENX - 1 )*INCX
  178. END IF
  179. IF( INCY.GT.0 )THEN
  180. KY = 1
  181. ELSE
  182. KY = 1 - ( LENY - 1 )*INCY
  183. END IF
  184. *
  185. * Start the operations. In this version the elements of A are
  186. * accessed sequentially with one pass through A.
  187. *
  188. * First form y := beta*y.
  189. *
  190. IF( BETA.NE.ONE )THEN
  191. IF( INCY.EQ.1 )THEN
  192. IF( BETA.EQ.ZERO )THEN
  193. DO 10, I = 1, LENY
  194. Y( I ) = ZERO
  195. 10 CONTINUE
  196. ELSE
  197. DO 20, I = 1, LENY
  198. Y( I ) = BETA*Y( I )
  199. 20 CONTINUE
  200. END IF
  201. ELSE
  202. IY = KY
  203. IF( BETA.EQ.ZERO )THEN
  204. DO 30, I = 1, LENY
  205. Y( IY ) = ZERO
  206. IY = IY + INCY
  207. 30 CONTINUE
  208. ELSE
  209. DO 40, I = 1, LENY
  210. Y( IY ) = BETA*Y( IY )
  211. IY = IY + INCY
  212. 40 CONTINUE
  213. END IF
  214. END IF
  215. END IF
  216. IF( ALPHA.EQ.ZERO )
  217. $ RETURN
  218. IF(NOTRANS)THEN
  219. *
  220. * Form y := alpha*A*x + y.
  221. *
  222. JX = KX
  223. IF( INCY.EQ.1 )THEN
  224. DO 60, J = 1, N
  225. IF( X( JX ).NE.ZERO )THEN
  226. IF (XCONJ) THEN
  227. TEMP = ALPHA*X( JX )
  228. ELSE
  229. TEMP = ALPHA*CONJG(X( JX ))
  230. ENDIF
  231. IF (NOCONJ) THEN
  232. DO 50, I = 1, M
  233. Y( I ) = Y( I ) + TEMP*A( I, J )
  234. 50 CONTINUE
  235. ELSE
  236. DO 55, I = 1, M
  237. Y( I ) = Y( I ) + TEMP*CONJG(A( I, J ))
  238. 55 CONTINUE
  239. ENDIF
  240. END IF
  241. JX = JX + INCX
  242. 60 CONTINUE
  243. ELSE
  244. DO 80, J = 1, N
  245. IF( X( JX ).NE.ZERO )THEN
  246. IF (XCONJ) THEN
  247. TEMP = ALPHA*X( JX )
  248. ELSE
  249. TEMP = ALPHA*CONJG(X( JX ))
  250. ENDIF
  251. IY = KY
  252. IF (NOCONJ) THEN
  253. DO 70, I = 1, M
  254. Y( IY ) = Y( IY ) + TEMP*A( I, J )
  255. IY = IY + INCY
  256. 70 CONTINUE
  257. ELSE
  258. DO 75, I = 1, M
  259. Y( IY ) = Y( IY ) + TEMP* CONJG(A( I, J ))
  260. IY = IY + INCY
  261. 75 CONTINUE
  262. ENDIF
  263. END IF
  264. JX = JX + INCX
  265. 80 CONTINUE
  266. END IF
  267. ELSE
  268. *
  269. * Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
  270. *
  271. JY = KY
  272. IF( INCX.EQ.1 )THEN
  273. DO 110, J = 1, N
  274. TEMP = ZERO
  275. IF( NOCONJ )THEN
  276. DO 90, I = 1, M
  277. IF (XCONJ) THEN
  278. TEMP = TEMP + A( I, J )*X( I )
  279. ELSE
  280. TEMP = TEMP + A( I, J )*CONJG(X( I ))
  281. ENDIF
  282. 90 CONTINUE
  283. ELSE
  284. DO 100, I = 1, M
  285. IF (XCONJ) THEN
  286. TEMP = TEMP + CONJG( A( I, J ) )*X( I )
  287. ELSE
  288. TEMP = TEMP + CONJG( A( I, J ) )*CONJG(X( I ))
  289. ENDIF
  290. 100 CONTINUE
  291. END IF
  292. Y( JY ) = Y( JY ) + ALPHA*TEMP
  293. JY = JY + INCY
  294. 110 CONTINUE
  295. ELSE
  296. DO 140, J = 1, N
  297. TEMP = ZERO
  298. IX = KX
  299. IF( NOCONJ )THEN
  300. DO 120, I = 1, M
  301. IF (XCONJ) THEN
  302. TEMP = TEMP + A( I, J )*X( IX )
  303. ELSE
  304. TEMP = TEMP + A( I, J )*CONJG(X( IX ))
  305. ENDIF
  306. IX = IX + INCX
  307. 120 CONTINUE
  308. ELSE
  309. DO 130, I = 1, M
  310. IF (XCONJ) THEN
  311. TEMP = TEMP + CONJG( A( I, J ) )*X( IX )
  312. ELSE
  313. TEMP = TEMP + CONJG( A( I, J ) )*CONJG(X( IX ))
  314. ENDIF
  315. IX = IX + INCX
  316. 130 CONTINUE
  317. END IF
  318. Y( JY ) = Y( JY ) + ALPHA*TEMP
  319. JY = JY + INCY
  320. 140 CONTINUE
  321. END IF
  322. END IF
  323. *
  324. RETURN
  325. *
  326. * End of CGEMV .
  327. *
  328. END