You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

getrf_parallel.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. static FLOAT dm1 = -1.;
  41. double sqrt(double);
  42. //In this case, the recursive getrf_parallel may overflow the stack.
  43. //Instead, use malloc to alloc job_t.
  44. #if MAX_CPU_NUMBER > GETRF_MEM_ALLOC_THRESHOLD
  45. #define USE_ALLOC_HEAP
  46. #endif
  47. #ifndef CACHE_LINE_SIZE
  48. #define CACHE_LINE_SIZE 8
  49. #endif
  50. #ifndef DIVIDE_RATE
  51. #define DIVIDE_RATE 2
  52. #endif
  53. #define GEMM_PQ MAX(GEMM_P, GEMM_Q)
  54. #define REAL_GEMM_R (GEMM_R - GEMM_PQ)
  55. #ifndef GETRF_FACTOR
  56. #define GETRF_FACTOR 0.75
  57. #endif
  58. #undef GETRF_FACTOR
  59. #define GETRF_FACTOR 1.00
  60. #ifdef HAVE_C11
  61. #define atomic_load_long(p) __atomic_load_n(p, __ATOMIC_RELAXED)
  62. #define atomic_store_long(p, v) __atomic_store_n(p, v, __ATOMIC_RELAXED)
  63. #else
  64. #define atomic_load_long(p) (BLASLONG)(*(volatile BLASLONG*)(p))
  65. #define atomic_store_long(p, v) (*(volatile BLASLONG *)(p)) = (v)
  66. #endif
  67. static __inline BLASLONG FORMULA1(BLASLONG M, BLASLONG N, BLASLONG IS, BLASLONG BK, BLASLONG T) {
  68. double m = (double)(M - IS - BK);
  69. double n = (double)(N - IS - BK);
  70. double b = (double)BK;
  71. double a = (double)T;
  72. return (BLASLONG)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a);
  73. }
  74. #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T))))
  75. static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  76. BLASLONG is, min_i;
  77. BLASLONG js, min_j;
  78. BLASLONG jjs, min_jj;
  79. BLASLONG m = args -> m;
  80. BLASLONG n = args -> n;
  81. BLASLONG k = args -> k;
  82. BLASLONG lda = args -> lda;
  83. BLASLONG off = args -> ldb;
  84. FLOAT *b = (FLOAT *)args -> b + (k ) * COMPSIZE;
  85. FLOAT *c = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  86. FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  87. FLOAT *sbb = sb;
  88. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  89. blasint *ipiv = (blasint *)args -> c;
  90. if (range_n) {
  91. n = range_n[1] - range_n[0];
  92. c += range_n[0] * lda * COMPSIZE;
  93. d += range_n[0] * lda * COMPSIZE;
  94. }
  95. if (args -> a == NULL) {
  96. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  97. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  98. } else {
  99. sb = (FLOAT *)args -> a;
  100. }
  101. for (js = 0; js < n; js += REAL_GEMM_R) {
  102. min_j = n - js;
  103. if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R;
  104. for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){
  105. min_jj = js + min_j - jjs;
  106. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  107. if (0 && GEMM_UNROLL_N <= 8) {
  108. LASWP_NCOPY(min_jj, off + 1, off + k,
  109. c + (- off + jjs * lda) * COMPSIZE, lda,
  110. ipiv, sbb + k * (jjs - js) * COMPSIZE);
  111. } else {
  112. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  113. #ifdef COMPLEX
  114. ZERO,
  115. #endif
  116. c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  117. GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE);
  118. }
  119. for (is = 0; is < k; is += GEMM_P) {
  120. min_i = k - is;
  121. if (min_i > GEMM_P) min_i = GEMM_P;
  122. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  123. #ifdef COMPLEX
  124. ZERO,
  125. #endif
  126. sb + k * is * COMPSIZE,
  127. sbb + (jjs - js) * k * COMPSIZE,
  128. c + (is + jjs * lda) * COMPSIZE, lda, is);
  129. }
  130. }
  131. if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) {
  132. MB;
  133. atomic_store_long(&flag[mypos * CACHE_LINE_SIZE], 0);
  134. }
  135. for (is = 0; is < m; is += GEMM_P){
  136. min_i = m - is;
  137. if (min_i > GEMM_P) min_i = GEMM_P;
  138. GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa);
  139. GEMM_KERNEL_N(min_i, min_j, k, dm1,
  140. #ifdef COMPLEX
  141. ZERO,
  142. #endif
  143. sa, sbb, d + (is + js * lda) * COMPSIZE, lda);
  144. }
  145. }
  146. }
  147. /* Non blocking implementation */
  148. typedef struct {
  149. volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  150. } job_t;
  151. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  152. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  153. #ifndef COMPLEX
  154. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  155. GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  156. #else
  157. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  158. GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  159. #endif
  160. static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  161. job_t *job = (job_t *)args -> common;
  162. BLASLONG xxx, bufferside;
  163. FLOAT *buffer[DIVIDE_RATE];
  164. BLASLONG jjs, min_jj, div_n;
  165. BLASLONG i, current;
  166. BLASLONG is, min_i;
  167. BLASLONG m, n_from, n_to;
  168. BLASLONG k = args -> k;
  169. BLASLONG lda = args -> lda;
  170. BLASLONG off = args -> ldb;
  171. FLOAT *a = (FLOAT *)args -> b + (k ) * COMPSIZE;
  172. FLOAT *b = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  173. FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  174. FLOAT *sbb= sb;
  175. blasint *ipiv = (blasint *)args -> c;
  176. BLASLONG jw;
  177. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  178. if (args -> a == NULL) {
  179. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  180. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  181. } else {
  182. sb = (FLOAT *)args -> a;
  183. }
  184. m = range_m[1] - range_m[0];
  185. n_from = range_n[mypos + 0];
  186. n_to = range_n[mypos + 1];
  187. a += range_m[0] * COMPSIZE;
  188. c += range_m[0] * COMPSIZE;
  189. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  190. buffer[0] = sbb;
  191. for (i = 1; i < DIVIDE_RATE; i++) {
  192. buffer[i] = buffer[i - 1] + GEMM_Q * (((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N) * COMPSIZE;
  193. }
  194. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  195. for (i = 0; i < args -> nthreads; i++)
  196. #if 1
  197. {
  198. do {
  199. jw = atomic_load_long(&job[mypos].working[i][CACHE_LINE_SIZE * bufferside]);
  200. } while (jw);
  201. MB;
  202. }
  203. #else
  204. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {};
  205. #endif
  206. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  207. min_jj = MIN(n_to, xxx + div_n) - jjs;
  208. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  209. if (0 && GEMM_UNROLL_N <= 8) {
  210. printf("helllo\n");
  211. LASWP_NCOPY(min_jj, off + 1, off + k,
  212. b + (- off + jjs * lda) * COMPSIZE, lda,
  213. ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  214. } else {
  215. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  216. #ifdef COMPLEX
  217. ZERO,
  218. #endif
  219. b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  220. GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda,
  221. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  222. }
  223. for (is = 0; is < k; is += GEMM_P) {
  224. min_i = k - is;
  225. if (min_i > GEMM_P) min_i = GEMM_P;
  226. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  227. #ifdef COMPLEX
  228. ZERO,
  229. #endif
  230. sb + k * is * COMPSIZE,
  231. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE,
  232. b + (is + jjs * lda) * COMPSIZE, lda, is);
  233. }
  234. }
  235. MB;
  236. for (i = 0; i < args -> nthreads; i++) {
  237. atomic_store_long(&job[mypos].working[i][CACHE_LINE_SIZE * bufferside], (BLASLONG)buffer[bufferside]);
  238. }
  239. }
  240. MB;
  241. atomic_store_long(&flag[mypos * CACHE_LINE_SIZE], 0);
  242. if (m == 0) {
  243. MB;
  244. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  245. atomic_store_long(&job[mypos].working[mypos][CACHE_LINE_SIZE * xxx], 0);
  246. }
  247. }
  248. for(is = 0; is < m; is += min_i){
  249. min_i = m - is;
  250. if (min_i >= GEMM_P * 2) {
  251. min_i = GEMM_P;
  252. } else
  253. if (min_i > GEMM_P) {
  254. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
  255. }
  256. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  257. current = mypos;
  258. do {
  259. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  260. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  261. if ((current != mypos) && (!is)) {
  262. #if 1
  263. do {
  264. jw = atomic_load_long(&job[current].working[mypos][CACHE_LINE_SIZE * bufferside]);
  265. } while (jw == 0);
  266. MB;
  267. #else
  268. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {};
  269. #endif
  270. }
  271. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k,
  272. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  273. c, lda, is, xxx);
  274. MB;
  275. if (is + min_i >= m) {
  276. atomic_store_long(&job[current].working[mypos][CACHE_LINE_SIZE * bufferside], 0);
  277. }
  278. }
  279. current ++;
  280. if (current >= args -> nthreads) current = 0;
  281. } while (current != mypos);
  282. }
  283. for (i = 0; i < args -> nthreads; i++) {
  284. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  285. #if 1
  286. do {
  287. jw = atomic_load_long(&job[mypos].working[i][CACHE_LINE_SIZE *xxx]);
  288. } while(jw != 0);
  289. MB;
  290. #else
  291. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {};
  292. #endif
  293. }
  294. }
  295. return 0;
  296. }
  297. #if 1
  298. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  299. BLASLONG m, n, mn, lda, offset;
  300. BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2];
  301. blasint *ipiv, iinfo, info;
  302. int mode;
  303. blas_arg_t newarg;
  304. FLOAT *a, *sbb;
  305. FLOAT dummyalpha[2] = {ZERO, ZERO};
  306. blas_queue_t queue[MAX_CPU_NUMBER];
  307. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  308. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  309. #ifndef USE_ALLOC_HEAP
  310. job_t job[MAX_CPU_NUMBER];
  311. #else
  312. job_t * job=NULL;
  313. #endif
  314. BLASLONG width, nn, mm;
  315. BLASLONG i, j, k, is, bk;
  316. BLASLONG num_cpu;
  317. BLASLONG f;
  318. #ifdef _MSC_VER
  319. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE];
  320. #else
  321. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  322. #endif
  323. #ifndef COMPLEX
  324. #ifdef XDOUBLE
  325. mode = BLAS_XDOUBLE | BLAS_REAL;
  326. #elif defined(DOUBLE)
  327. mode = BLAS_DOUBLE | BLAS_REAL;
  328. #else
  329. mode = BLAS_SINGLE | BLAS_REAL;
  330. #endif
  331. #else
  332. #ifdef XDOUBLE
  333. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  334. #elif defined(DOUBLE)
  335. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  336. #else
  337. mode = BLAS_SINGLE | BLAS_COMPLEX;
  338. #endif
  339. #endif
  340. m = args -> m;
  341. n = args -> n;
  342. a = (FLOAT *)args -> a;
  343. lda = args -> lda;
  344. ipiv = (blasint *)args -> c;
  345. offset = 0;
  346. if (range_n) {
  347. m -= range_n[0];
  348. n = range_n[1] - range_n[0];
  349. offset = range_n[0];
  350. a += range_n[0] * (lda + 1) * COMPSIZE;
  351. }
  352. if (m <= 0 || n <= 0) return 0;
  353. newarg.c = ipiv;
  354. newarg.lda = lda;
  355. info = 0;
  356. mn = MIN(m, n);
  357. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  358. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  359. if (init_bk <= GEMM_UNROLL_N) {
  360. info = GETF2(args, NULL, range_n, sa, sb, 0);
  361. return info;
  362. }
  363. next_bk = init_bk;
  364. bk = mn;
  365. if (bk > next_bk) bk = next_bk;
  366. range_n_new[0] = offset;
  367. range_n_new[1] = offset + bk;
  368. iinfo = CNAME(args, NULL, range_n_new, sa, sb, 0);
  369. if (iinfo && !info) info = iinfo;
  370. #ifdef USE_ALLOC_HEAP
  371. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  372. if(job==NULL){
  373. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  374. exit(1);
  375. }
  376. #endif
  377. newarg.common = (void *)job;
  378. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  379. sbb = (FLOAT *)((((BLASULONG)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  380. is = 0;
  381. num_cpu = 0;
  382. while (is < mn) {
  383. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  384. if (width > mn - is - bk) width = mn - is - bk;
  385. if (width < bk) {
  386. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  387. if (next_bk > bk) next_bk = bk;
  388. width = next_bk;
  389. if (width > mn - is - bk) width = mn - is - bk;
  390. }
  391. if (num_cpu > 0) {
  392. WMB;
  393. exec_blas_async_wait(num_cpu, &queue[0]);
  394. }
  395. mm = m - bk - is;
  396. nn = n - bk - is;
  397. newarg.a = sb;
  398. newarg.b = a + (is + is * lda) * COMPSIZE;
  399. newarg.d = (void *)flag;
  400. newarg.m = mm;
  401. newarg.n = nn;
  402. newarg.k = bk;
  403. newarg.ldb = is + offset;
  404. nn -= width;
  405. range_n_mine[0] = 0;
  406. range_n_mine[1] = width;
  407. range_N[0] = width;
  408. range_M[0] = 0;
  409. num_cpu = 0;
  410. while (nn > 0){
  411. if (mm >= nn) {
  412. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  413. if (width == 0) width = nn;
  414. if (nn < width) width = nn;
  415. nn -= width;
  416. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  417. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  418. if (width == 0) width = mm;
  419. if (mm < width) width = mm;
  420. if (nn <= 0) width = mm;
  421. mm -= width;
  422. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  423. } else {
  424. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  425. if (width == 0) width = mm;
  426. if (mm < width) width = mm;
  427. mm -= width;
  428. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  429. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  430. if (width == 0) width = nn;
  431. if (nn < width) width = nn;
  432. if (mm <= 0) width = nn;
  433. nn -= width;
  434. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  435. }
  436. queue[num_cpu].mode = mode;
  437. queue[num_cpu].routine = inner_advanced_thread;
  438. queue[num_cpu].args = &newarg;
  439. queue[num_cpu].range_m = &range_M[num_cpu];
  440. queue[num_cpu].range_n = &range_N[0];
  441. queue[num_cpu].sa = NULL;
  442. queue[num_cpu].sb = NULL;
  443. queue[num_cpu].next = &queue[num_cpu + 1];
  444. atomic_store_long(&flag[num_cpu * CACHE_LINE_SIZE], 1);
  445. num_cpu ++;
  446. }
  447. newarg.nthreads = num_cpu;
  448. if (num_cpu > 0) {
  449. for (j = 0; j < num_cpu; j++) {
  450. for (i = 0; i < num_cpu; i++) {
  451. for (k = 0; k < DIVIDE_RATE; k++) {
  452. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  453. }
  454. }
  455. }
  456. }
  457. is += bk;
  458. bk = mn - is;
  459. if (bk > next_bk) bk = next_bk;
  460. range_n_new[0] = offset + is;
  461. range_n_new[1] = offset + is + bk;
  462. if (num_cpu > 0) {
  463. queue[num_cpu - 1].next = NULL;
  464. WMB;
  465. exec_blas_async(0, &queue[0]);
  466. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  467. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  468. if (iinfo && !info) info = iinfo + is;
  469. for (i = 0; i < num_cpu; i ++) {
  470. #if 1
  471. do {
  472. f = atomic_load_long(&flag[i*CACHE_LINE_SIZE]);
  473. } while (f != 0);
  474. MB;
  475. #else
  476. while (flag[i*CACHE_LINE_SIZE]) {};
  477. #endif
  478. }
  479. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  480. } else {
  481. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  482. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  483. if (iinfo && !info) info = iinfo + is;
  484. }
  485. }
  486. next_bk = init_bk;
  487. is = 0;
  488. while (is < mn) {
  489. bk = mn - is;
  490. if (bk > next_bk) bk = next_bk;
  491. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  492. if (width > mn - is - bk) width = mn - is - bk;
  493. if (width < bk) {
  494. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  495. if (next_bk > bk) next_bk = bk;
  496. }
  497. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  498. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  499. ipiv, 1, (int (*)(void))LASWP_PLUS, args -> nthreads);
  500. is += bk;
  501. }
  502. #ifdef USE_ALLOC_HEAP
  503. free(job);
  504. #endif
  505. return info;
  506. }
  507. #else
  508. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  509. BLASLONG m, n, mn, lda, offset;
  510. BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2];
  511. blasint *ipiv, iinfo, info;
  512. int mode;
  513. blas_arg_t newarg;
  514. FLOAT *a, *sbb;
  515. FLOAT dummyalpha[2] = {ZERO, ZERO};
  516. blas_queue_t queue[MAX_CPU_NUMBER];
  517. BLASLONG range[MAX_CPU_NUMBER + 1];
  518. BLASLONG width, nn, num_cpu;
  519. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  520. #ifndef COMPLEX
  521. #ifdef XDOUBLE
  522. mode = BLAS_XDOUBLE | BLAS_REAL;
  523. #elif defined(DOUBLE)
  524. mode = BLAS_DOUBLE | BLAS_REAL;
  525. #else
  526. mode = BLAS_SINGLE | BLAS_REAL;
  527. #endif
  528. #else
  529. #ifdef XDOUBLE
  530. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  531. #elif defined(DOUBLE)
  532. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  533. #else
  534. mode = BLAS_SINGLE | BLAS_COMPLEX;
  535. #endif
  536. #endif
  537. m = args -> m;
  538. n = args -> n;
  539. a = (FLOAT *)args -> a;
  540. lda = args -> lda;
  541. ipiv = (blasint *)args -> c;
  542. offset = 0;
  543. if (range_n) {
  544. m -= range_n[0];
  545. n = range_n[1] - range_n[0];
  546. offset = range_n[0];
  547. a += range_n[0] * (lda + 1) * COMPSIZE;
  548. }
  549. if (m <= 0 || n <= 0) return 0;
  550. newarg.c = ipiv;
  551. newarg.lda = lda;
  552. newarg.common = NULL;
  553. newarg.nthreads = args -> nthreads;
  554. mn = MIN(m, n);
  555. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  556. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  557. if (init_bk <= GEMM_UNROLL_N) {
  558. info = GETF2(args, NULL, range_n, sa, sb, 0);
  559. return info;
  560. }
  561. width = FORMULA1(m, n, 0, init_bk, args -> nthreads);
  562. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  563. if (width > n - init_bk) width = n - init_bk;
  564. if (width < init_bk) {
  565. BLASLONG temp;
  566. temp = FORMULA2(m, n, 0, init_bk, args -> nthreads);
  567. temp = ((temp + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  568. if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N;
  569. if (temp < init_bk) init_bk = temp;
  570. }
  571. next_bk = init_bk;
  572. bk = init_bk;
  573. range_n_new[0] = offset;
  574. range_n_new[1] = offset + bk;
  575. info = CNAME(args, NULL, range_n_new, sa, sb, 0);
  576. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  577. is = 0;
  578. num_cpu = 0;
  579. sbb = (FLOAT *)((((BLASULONG)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  580. while (is < mn) {
  581. width = FORMULA1(m, n, is, bk, args -> nthreads);
  582. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  583. if (width < bk) {
  584. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  585. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  586. if (next_bk > bk) next_bk = bk;
  587. #if 0
  588. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  589. #else
  590. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  591. #endif
  592. width = next_bk;
  593. }
  594. if (width > mn - is - bk) {
  595. next_bk = mn - is - bk;
  596. width = next_bk;
  597. }
  598. nn = n - bk - is;
  599. if (width > nn) width = nn;
  600. WMB;
  601. if (num_cpu > 1) exec_blas_async_wait(num_cpu - 1, &queue[1]);
  602. range[0] = 0;
  603. range[1] = width;
  604. num_cpu = 1;
  605. nn -= width;
  606. newarg.a = sb;
  607. newarg.b = a + (is + is * lda) * COMPSIZE;
  608. newarg.d = (void *)flag;
  609. newarg.m = m - bk - is;
  610. newarg.n = n - bk - is;
  611. newarg.k = bk;
  612. newarg.ldb = is + offset;
  613. while (nn > 0){
  614. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu);
  615. nn -= width;
  616. if (nn < 0) width = width + nn;
  617. range[num_cpu + 1] = range[num_cpu] + width;
  618. queue[num_cpu].mode = mode;
  619. //queue[num_cpu].routine = inner_advanced_thread;
  620. queue[num_cpu].routine = (void *)inner_basic_thread;
  621. queue[num_cpu].args = &newarg;
  622. queue[num_cpu].range_m = NULL;
  623. queue[num_cpu].range_n = &range[num_cpu];
  624. queue[num_cpu].sa = NULL;
  625. queue[num_cpu].sb = NULL;
  626. queue[num_cpu].next = &queue[num_cpu + 1];
  627. atomic_store_long(&flag[num_cpu * CACHE_LINE_SIZE], 1);
  628. num_cpu ++;
  629. }
  630. queue[num_cpu - 1].next = NULL;
  631. is += bk;
  632. bk = n - is;
  633. if (bk > next_bk) bk = next_bk;
  634. range_n_new[0] = offset + is;
  635. range_n_new[1] = offset + is + bk;
  636. WMB;
  637. if (num_cpu > 1) {
  638. exec_blas_async(1, &queue[1]);
  639. #if 0
  640. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0);
  641. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  642. #else
  643. if (range[1] >= bk * 4) {
  644. BLASLONG myrange[2];
  645. myrange[0] = 0;
  646. myrange[1] = bk;
  647. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  648. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  649. myrange[0] = bk;
  650. myrange[1] = range[1];
  651. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  652. } else {
  653. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  654. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  655. }
  656. #endif
  657. for (i = 1; i < num_cpu; i ++) while (atomic_load_long(&flag[i * CACHE_LINE_SIZE])) {};
  658. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  659. } else {
  660. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  661. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  662. }
  663. if (iinfo && !info) info = iinfo + is;
  664. }
  665. next_bk = init_bk;
  666. bk = init_bk;
  667. is = 0;
  668. while (is < mn) {
  669. bk = mn - is;
  670. if (bk > next_bk) bk = next_bk;
  671. width = FORMULA1(m, n, is, bk, args -> nthreads);
  672. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  673. if (width < bk) {
  674. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  675. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  676. if (next_bk > bk) next_bk = bk;
  677. #if 0
  678. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  679. #else
  680. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  681. #endif
  682. }
  683. if (width > mn - is - bk) {
  684. next_bk = mn - is - bk;
  685. width = next_bk;
  686. }
  687. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  688. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  689. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  690. is += bk;
  691. }
  692. return info;
  693. }
  694. #endif