You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cunmql.f 9.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. *> \brief \b CUNMQL
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNMQL + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmql.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmql.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmql.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER INFO, K, LDA, LDC, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  30. * $ WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CUNMQL overwrites the general complex M-by-N matrix C with
  40. *>
  41. *> SIDE = 'L' SIDE = 'R'
  42. *> TRANS = 'N': Q * C C * Q
  43. *> TRANS = 'C': Q**H * C C * Q**H
  44. *>
  45. *> where Q is a complex unitary matrix defined as the product of k
  46. *> elementary reflectors
  47. *>
  48. *> Q = H(k) . . . H(2) H(1)
  49. *>
  50. *> as returned by CGEQLF. Q is of order M if SIDE = 'L' and of order N
  51. *> if SIDE = 'R'.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] SIDE
  58. *> \verbatim
  59. *> SIDE is CHARACTER*1
  60. *> = 'L': apply Q or Q**H from the Left;
  61. *> = 'R': apply Q or Q**H from the Right.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] TRANS
  65. *> \verbatim
  66. *> TRANS is CHARACTER*1
  67. *> = 'N': No transpose, apply Q;
  68. *> = 'C': Conjugate transpose, apply Q**H.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] M
  72. *> \verbatim
  73. *> M is INTEGER
  74. *> The number of rows of the matrix C. M >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> The number of columns of the matrix C. N >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] K
  84. *> \verbatim
  85. *> K is INTEGER
  86. *> The number of elementary reflectors whose product defines
  87. *> the matrix Q.
  88. *> If SIDE = 'L', M >= K >= 0;
  89. *> if SIDE = 'R', N >= K >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] A
  93. *> \verbatim
  94. *> A is COMPLEX array, dimension (LDA,K)
  95. *> The i-th column must contain the vector which defines the
  96. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  97. *> CGEQLF in the last k columns of its array argument A.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LDA
  101. *> \verbatim
  102. *> LDA is INTEGER
  103. *> The leading dimension of the array A.
  104. *> If SIDE = 'L', LDA >= max(1,M);
  105. *> if SIDE = 'R', LDA >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[in] TAU
  109. *> \verbatim
  110. *> TAU is COMPLEX array, dimension (K)
  111. *> TAU(i) must contain the scalar factor of the elementary
  112. *> reflector H(i), as returned by CGEQLF.
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] C
  116. *> \verbatim
  117. *> C is COMPLEX array, dimension (LDC,N)
  118. *> On entry, the M-by-N matrix C.
  119. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDC
  123. *> \verbatim
  124. *> LDC is INTEGER
  125. *> The leading dimension of the array C. LDC >= max(1,M).
  126. *> \endverbatim
  127. *>
  128. *> \param[out] WORK
  129. *> \verbatim
  130. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  131. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] LWORK
  135. *> \verbatim
  136. *> LWORK is INTEGER
  137. *> The dimension of the array WORK.
  138. *> If SIDE = 'L', LWORK >= max(1,N);
  139. *> if SIDE = 'R', LWORK >= max(1,M).
  140. *> For good performance, LWORK should generally be larger.
  141. *>
  142. *> If LWORK = -1, then a workspace query is assumed; the routine
  143. *> only calculates the optimal size of the WORK array, returns
  144. *> this value as the first entry of the WORK array, and no error
  145. *> message related to LWORK is issued by XERBLA.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] INFO
  149. *> \verbatim
  150. *> INFO is INTEGER
  151. *> = 0: successful exit
  152. *> < 0: if INFO = -i, the i-th argument had an illegal value
  153. *> \endverbatim
  154. *
  155. * Authors:
  156. * ========
  157. *
  158. *> \author Univ. of Tennessee
  159. *> \author Univ. of California Berkeley
  160. *> \author Univ. of Colorado Denver
  161. *> \author NAG Ltd.
  162. *
  163. *> \ingroup complexOTHERcomputational
  164. *
  165. * =====================================================================
  166. SUBROUTINE CUNMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  167. $ WORK, LWORK, INFO )
  168. *
  169. * -- LAPACK computational routine --
  170. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  171. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  172. *
  173. * .. Scalar Arguments ..
  174. CHARACTER SIDE, TRANS
  175. INTEGER INFO, K, LDA, LDC, LWORK, M, N
  176. * ..
  177. * .. Array Arguments ..
  178. COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  179. $ WORK( * )
  180. * ..
  181. *
  182. * =====================================================================
  183. *
  184. * .. Parameters ..
  185. INTEGER NBMAX, LDT, TSIZE
  186. PARAMETER ( NBMAX = 64, LDT = NBMAX+1,
  187. $ TSIZE = LDT*NBMAX )
  188. * ..
  189. * .. Local Scalars ..
  190. LOGICAL LEFT, LQUERY, NOTRAN
  191. INTEGER I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT,
  192. $ MI, NB, NBMIN, NI, NQ, NW
  193. * ..
  194. * .. External Functions ..
  195. LOGICAL LSAME
  196. INTEGER ILAENV
  197. EXTERNAL LSAME, ILAENV
  198. * ..
  199. * .. External Subroutines ..
  200. EXTERNAL CLARFB, CLARFT, CUNM2L, XERBLA
  201. * ..
  202. * .. Intrinsic Functions ..
  203. INTRINSIC MAX, MIN
  204. * ..
  205. * .. Executable Statements ..
  206. *
  207. * Test the input arguments
  208. *
  209. INFO = 0
  210. LEFT = LSAME( SIDE, 'L' )
  211. NOTRAN = LSAME( TRANS, 'N' )
  212. LQUERY = ( LWORK.EQ.-1 )
  213. *
  214. * NQ is the order of Q and NW is the minimum dimension of WORK
  215. *
  216. IF( LEFT ) THEN
  217. NQ = M
  218. NW = MAX( 1, N )
  219. ELSE
  220. NQ = N
  221. NW = MAX( 1, M )
  222. END IF
  223. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  224. INFO = -1
  225. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  226. INFO = -2
  227. ELSE IF( M.LT.0 ) THEN
  228. INFO = -3
  229. ELSE IF( N.LT.0 ) THEN
  230. INFO = -4
  231. ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  232. INFO = -5
  233. ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
  234. INFO = -7
  235. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  236. INFO = -10
  237. ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  238. INFO = -12
  239. END IF
  240. *
  241. IF( INFO.EQ.0 ) THEN
  242. *
  243. * Compute the workspace requirements
  244. *
  245. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  246. LWKOPT = 1
  247. ELSE
  248. NB = MIN( NBMAX, ILAENV( 1, 'CUNMQL', SIDE // TRANS, M, N,
  249. $ K, -1 ) )
  250. LWKOPT = NW*NB + TSIZE
  251. END IF
  252. WORK( 1 ) = LWKOPT
  253. END IF
  254. *
  255. IF( INFO.NE.0 ) THEN
  256. CALL XERBLA( 'CUNMQL', -INFO )
  257. RETURN
  258. ELSE IF( LQUERY ) THEN
  259. RETURN
  260. END IF
  261. *
  262. * Quick return if possible
  263. *
  264. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  265. RETURN
  266. END IF
  267. *
  268. * Determine the block size
  269. *
  270. NBMIN = 2
  271. LDWORK = NW
  272. IF( NB.GT.1 .AND. NB.LT.K ) THEN
  273. IF( LWORK.LT.LWKOPT ) THEN
  274. NB = (LWORK-TSIZE) / LDWORK
  275. NBMIN = MAX( 2, ILAENV( 2, 'CUNMQL', SIDE // TRANS, M, N, K,
  276. $ -1 ) )
  277. END IF
  278. END IF
  279. *
  280. IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
  281. *
  282. * Use unblocked code
  283. *
  284. CALL CUNM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
  285. $ IINFO )
  286. ELSE
  287. *
  288. * Use blocked code
  289. *
  290. IWT = 1 + NW*NB
  291. IF( ( LEFT .AND. NOTRAN ) .OR.
  292. $ ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
  293. I1 = 1
  294. I2 = K
  295. I3 = NB
  296. ELSE
  297. I1 = ( ( K-1 ) / NB )*NB + 1
  298. I2 = 1
  299. I3 = -NB
  300. END IF
  301. *
  302. IF( LEFT ) THEN
  303. NI = N
  304. ELSE
  305. MI = M
  306. END IF
  307. *
  308. DO 10 I = I1, I2, I3
  309. IB = MIN( NB, K-I+1 )
  310. *
  311. * Form the triangular factor of the block reflector
  312. * H = H(i+ib-1) . . . H(i+1) H(i)
  313. *
  314. CALL CLARFT( 'Backward', 'Columnwise', NQ-K+I+IB-1, IB,
  315. $ A( 1, I ), LDA, TAU( I ), WORK( IWT ), LDT )
  316. IF( LEFT ) THEN
  317. *
  318. * H or H**H is applied to C(1:m-k+i+ib-1,1:n)
  319. *
  320. MI = M - K + I + IB - 1
  321. ELSE
  322. *
  323. * H or H**H is applied to C(1:m,1:n-k+i+ib-1)
  324. *
  325. NI = N - K + I + IB - 1
  326. END IF
  327. *
  328. * Apply H or H**H
  329. *
  330. CALL CLARFB( SIDE, TRANS, 'Backward', 'Columnwise', MI, NI,
  331. $ IB, A( 1, I ), LDA, WORK( IWT ), LDT, C, LDC,
  332. $ WORK, LDWORK )
  333. 10 CONTINUE
  334. END IF
  335. WORK( 1 ) = LWKOPT
  336. RETURN
  337. *
  338. * End of CUNMQL
  339. *
  340. END