You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgetrs.f 6.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222
  1. *> \brief \b CGETRS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGETRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANS
  25. * INTEGER INFO, LDA, LDB, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX A( LDA, * ), B( LDB, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CGETRS solves a system of linear equations
  39. *> A * X = B, A**T * X = B, or A**H * X = B
  40. *> with a general N-by-N matrix A using the LU factorization computed
  41. *> by CGETRF.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] TRANS
  48. *> \verbatim
  49. *> TRANS is CHARACTER*1
  50. *> Specifies the form of the system of equations:
  51. *> = 'N': A * X = B (No transpose)
  52. *> = 'T': A**T * X = B (Transpose)
  53. *> = 'C': A**H * X = B (Conjugate transpose)
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NRHS
  63. *> \verbatim
  64. *> NRHS is INTEGER
  65. *> The number of right hand sides, i.e., the number of columns
  66. *> of the matrix B. NRHS >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] A
  70. *> \verbatim
  71. *> A is COMPLEX array, dimension (LDA,N)
  72. *> The factors L and U from the factorization A = P*L*U
  73. *> as computed by CGETRF.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The leading dimension of the array A. LDA >= max(1,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] IPIV
  83. *> \verbatim
  84. *> IPIV is INTEGER array, dimension (N)
  85. *> The pivot indices from CGETRF; for 1<=i<=N, row i of the
  86. *> matrix was interchanged with row IPIV(i).
  87. *> \endverbatim
  88. *>
  89. *> \param[in,out] B
  90. *> \verbatim
  91. *> B is COMPLEX array, dimension (LDB,NRHS)
  92. *> On entry, the right hand side matrix B.
  93. *> On exit, the solution matrix X.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] LDB
  97. *> \verbatim
  98. *> LDB is INTEGER
  99. *> The leading dimension of the array B. LDB >= max(1,N).
  100. *> \endverbatim
  101. *>
  102. *> \param[out] INFO
  103. *> \verbatim
  104. *> INFO is INTEGER
  105. *> = 0: successful exit
  106. *> < 0: if INFO = -i, the i-th argument had an illegal value
  107. *> \endverbatim
  108. *
  109. * Authors:
  110. * ========
  111. *
  112. *> \author Univ. of Tennessee
  113. *> \author Univ. of California Berkeley
  114. *> \author Univ. of Colorado Denver
  115. *> \author NAG Ltd.
  116. *
  117. *> \ingroup complexGEcomputational
  118. *
  119. * =====================================================================
  120. SUBROUTINE CGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  121. *
  122. * -- LAPACK computational routine --
  123. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  124. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  125. *
  126. * .. Scalar Arguments ..
  127. CHARACTER TRANS
  128. INTEGER INFO, LDA, LDB, N, NRHS
  129. * ..
  130. * .. Array Arguments ..
  131. INTEGER IPIV( * )
  132. COMPLEX A( LDA, * ), B( LDB, * )
  133. * ..
  134. *
  135. * =====================================================================
  136. *
  137. * .. Parameters ..
  138. COMPLEX ONE
  139. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  140. * ..
  141. * .. Local Scalars ..
  142. LOGICAL NOTRAN
  143. * ..
  144. * .. External Functions ..
  145. LOGICAL LSAME
  146. EXTERNAL LSAME
  147. * ..
  148. * .. External Subroutines ..
  149. EXTERNAL CLASWP, CTRSM, XERBLA
  150. * ..
  151. * .. Intrinsic Functions ..
  152. INTRINSIC MAX
  153. * ..
  154. * .. Executable Statements ..
  155. *
  156. * Test the input parameters.
  157. *
  158. INFO = 0
  159. NOTRAN = LSAME( TRANS, 'N' )
  160. IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  161. $ LSAME( TRANS, 'C' ) ) THEN
  162. INFO = -1
  163. ELSE IF( N.LT.0 ) THEN
  164. INFO = -2
  165. ELSE IF( NRHS.LT.0 ) THEN
  166. INFO = -3
  167. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  168. INFO = -5
  169. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  170. INFO = -8
  171. END IF
  172. IF( INFO.NE.0 ) THEN
  173. CALL XERBLA( 'CGETRS', -INFO )
  174. RETURN
  175. END IF
  176. *
  177. * Quick return if possible
  178. *
  179. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  180. $ RETURN
  181. *
  182. IF( NOTRAN ) THEN
  183. *
  184. * Solve A * X = B.
  185. *
  186. * Apply row interchanges to the right hand sides.
  187. *
  188. CALL CLASWP( NRHS, B, LDB, 1, N, IPIV, 1 )
  189. *
  190. * Solve L*X = B, overwriting B with X.
  191. *
  192. CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,
  193. $ ONE, A, LDA, B, LDB )
  194. *
  195. * Solve U*X = B, overwriting B with X.
  196. *
  197. CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
  198. $ NRHS, ONE, A, LDA, B, LDB )
  199. ELSE
  200. *
  201. * Solve A**T * X = B or A**H * X = B.
  202. *
  203. * Solve U**T *X = B or U**H *X = B, overwriting B with X.
  204. *
  205. CALL CTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N, NRHS, ONE,
  206. $ A, LDA, B, LDB )
  207. *
  208. * Solve L**T *X = B, or L**H *X = B overwriting B with X.
  209. *
  210. CALL CTRSM( 'Left', 'Lower', TRANS, 'Unit', N, NRHS, ONE, A,
  211. $ LDA, B, LDB )
  212. *
  213. * Apply row interchanges to the solution vectors.
  214. *
  215. CALL CLASWP( NRHS, B, LDB, 1, N, IPIV, -1 )
  216. END IF
  217. *
  218. RETURN
  219. *
  220. * End of CGETRS
  221. *
  222. END