You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlanst.f 5.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. *> \brief \b DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLANST + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanst.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanst.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanst.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM
  25. * INTEGER N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION D( * ), E( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DLANST returns the value of the one norm, or the Frobenius norm, or
  38. *> the infinity norm, or the element of largest absolute value of a
  39. *> real symmetric tridiagonal matrix A.
  40. *> \endverbatim
  41. *>
  42. *> \return DLANST
  43. *> \verbatim
  44. *>
  45. *> DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  46. *> (
  47. *> ( norm1(A), NORM = '1', 'O' or 'o'
  48. *> (
  49. *> ( normI(A), NORM = 'I' or 'i'
  50. *> (
  51. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  52. *>
  53. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  54. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  55. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  56. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] NORM
  63. *> \verbatim
  64. *> NORM is CHARACTER*1
  65. *> Specifies the value to be returned in DLANST as described
  66. *> above.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] N
  70. *> \verbatim
  71. *> N is INTEGER
  72. *> The order of the matrix A. N >= 0. When N = 0, DLANST is
  73. *> set to zero.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] D
  77. *> \verbatim
  78. *> D is DOUBLE PRECISION array, dimension (N)
  79. *> The diagonal elements of A.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] E
  83. *> \verbatim
  84. *> E is DOUBLE PRECISION array, dimension (N-1)
  85. *> The (n-1) sub-diagonal or super-diagonal elements of A.
  86. *> \endverbatim
  87. *
  88. * Authors:
  89. * ========
  90. *
  91. *> \author Univ. of Tennessee
  92. *> \author Univ. of California Berkeley
  93. *> \author Univ. of Colorado Denver
  94. *> \author NAG Ltd.
  95. *
  96. *> \ingroup OTHERauxiliary
  97. *
  98. * =====================================================================
  99. DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
  100. *
  101. * -- LAPACK auxiliary routine --
  102. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  103. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  104. *
  105. * .. Scalar Arguments ..
  106. CHARACTER NORM
  107. INTEGER N
  108. * ..
  109. * .. Array Arguments ..
  110. DOUBLE PRECISION D( * ), E( * )
  111. * ..
  112. *
  113. * =====================================================================
  114. *
  115. * .. Parameters ..
  116. DOUBLE PRECISION ONE, ZERO
  117. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  118. * ..
  119. * .. Local Scalars ..
  120. INTEGER I
  121. DOUBLE PRECISION ANORM, SCALE, SUM
  122. * ..
  123. * .. External Functions ..
  124. LOGICAL LSAME, DISNAN
  125. EXTERNAL LSAME, DISNAN
  126. * ..
  127. * .. External Subroutines ..
  128. EXTERNAL DLASSQ
  129. * ..
  130. * .. Intrinsic Functions ..
  131. INTRINSIC ABS, SQRT
  132. * ..
  133. * .. Executable Statements ..
  134. *
  135. IF( N.LE.0 ) THEN
  136. ANORM = ZERO
  137. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  138. *
  139. * Find max(abs(A(i,j))).
  140. *
  141. ANORM = ABS( D( N ) )
  142. DO 10 I = 1, N - 1
  143. SUM = ABS( D( I ) )
  144. IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
  145. SUM = ABS( E( I ) )
  146. IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
  147. 10 CONTINUE
  148. ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
  149. $ LSAME( NORM, 'I' ) ) THEN
  150. *
  151. * Find norm1(A).
  152. *
  153. IF( N.EQ.1 ) THEN
  154. ANORM = ABS( D( 1 ) )
  155. ELSE
  156. ANORM = ABS( D( 1 ) )+ABS( E( 1 ) )
  157. SUM = ABS( E( N-1 ) )+ABS( D( N ) )
  158. IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
  159. DO 20 I = 2, N - 1
  160. SUM = ABS( D( I ) )+ABS( E( I ) )+ABS( E( I-1 ) )
  161. IF( ANORM .LT. SUM .OR. DISNAN( SUM ) ) ANORM = SUM
  162. 20 CONTINUE
  163. END IF
  164. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  165. *
  166. * Find normF(A).
  167. *
  168. SCALE = ZERO
  169. SUM = ONE
  170. IF( N.GT.1 ) THEN
  171. CALL DLASSQ( N-1, E, 1, SCALE, SUM )
  172. SUM = 2*SUM
  173. END IF
  174. CALL DLASSQ( N, D, 1, SCALE, SUM )
  175. ANORM = SCALE*SQRT( SUM )
  176. END IF
  177. *
  178. DLANST = ANORM
  179. RETURN
  180. *
  181. * End of DLANST
  182. *
  183. END