You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dspgst.f 8.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. *> \brief \b DSPGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSPGST + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgst.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgst.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgst.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, ITYPE, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION AP( * ), BP( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DSPGST reduces a real symmetric-definite generalized eigenproblem
  38. *> to standard form, using packed storage.
  39. *>
  40. *> If ITYPE = 1, the problem is A*x = lambda*B*x,
  41. *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
  42. *>
  43. *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
  44. *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
  45. *>
  46. *> B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
  56. *> = 2 or 3: compute U*A*U**T or L**T*A*L.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> = 'U': Upper triangle of A is stored and B is factored as
  63. *> U**T*U;
  64. *> = 'L': Lower triangle of A is stored and B is factored as
  65. *> L*L**T.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrices A and B. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] AP
  75. *> \verbatim
  76. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  77. *> On entry, the upper or lower triangle of the symmetric matrix
  78. *> A, packed columnwise in a linear array. The j-th column of A
  79. *> is stored in the array AP as follows:
  80. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  81. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  82. *>
  83. *> On exit, if INFO = 0, the transformed matrix, stored in the
  84. *> same format as A.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] BP
  88. *> \verbatim
  89. *> BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  90. *> The triangular factor from the Cholesky factorization of B,
  91. *> stored in the same format as A, as returned by DPPTRF.
  92. *> \endverbatim
  93. *>
  94. *> \param[out] INFO
  95. *> \verbatim
  96. *> INFO is INTEGER
  97. *> = 0: successful exit
  98. *> < 0: if INFO = -i, the i-th argument had an illegal value
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \date December 2016
  110. *
  111. *> \ingroup doubleOTHERcomputational
  112. *
  113. * =====================================================================
  114. SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
  115. *
  116. * -- LAPACK computational routine (version 3.7.0) --
  117. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  118. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  119. * December 2016
  120. *
  121. * .. Scalar Arguments ..
  122. CHARACTER UPLO
  123. INTEGER INFO, ITYPE, N
  124. * ..
  125. * .. Array Arguments ..
  126. DOUBLE PRECISION AP( * ), BP( * )
  127. * ..
  128. *
  129. * =====================================================================
  130. *
  131. * .. Parameters ..
  132. DOUBLE PRECISION ONE, HALF
  133. PARAMETER ( ONE = 1.0D0, HALF = 0.5D0 )
  134. * ..
  135. * .. Local Scalars ..
  136. LOGICAL UPPER
  137. INTEGER J, J1, J1J1, JJ, K, K1, K1K1, KK
  138. DOUBLE PRECISION AJJ, AKK, BJJ, BKK, CT
  139. * ..
  140. * .. External Subroutines ..
  141. EXTERNAL DAXPY, DSCAL, DSPMV, DSPR2, DTPMV, DTPSV,
  142. $ XERBLA
  143. * ..
  144. * .. External Functions ..
  145. LOGICAL LSAME
  146. DOUBLE PRECISION DDOT
  147. EXTERNAL LSAME, DDOT
  148. * ..
  149. * .. Executable Statements ..
  150. *
  151. * Test the input parameters.
  152. *
  153. INFO = 0
  154. UPPER = LSAME( UPLO, 'U' )
  155. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  156. INFO = -1
  157. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  158. INFO = -2
  159. ELSE IF( N.LT.0 ) THEN
  160. INFO = -3
  161. END IF
  162. IF( INFO.NE.0 ) THEN
  163. CALL XERBLA( 'DSPGST', -INFO )
  164. RETURN
  165. END IF
  166. *
  167. IF( ITYPE.EQ.1 ) THEN
  168. IF( UPPER ) THEN
  169. *
  170. * Compute inv(U**T)*A*inv(U)
  171. *
  172. * J1 and JJ are the indices of A(1,j) and A(j,j)
  173. *
  174. JJ = 0
  175. DO 10 J = 1, N
  176. J1 = JJ + 1
  177. JJ = JJ + J
  178. *
  179. * Compute the j-th column of the upper triangle of A
  180. *
  181. BJJ = BP( JJ )
  182. CALL DTPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
  183. $ AP( J1 ), 1 )
  184. CALL DSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
  185. $ AP( J1 ), 1 )
  186. CALL DSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
  187. AP( JJ ) = ( AP( JJ )-DDOT( J-1, AP( J1 ), 1, BP( J1 ),
  188. $ 1 ) ) / BJJ
  189. 10 CONTINUE
  190. ELSE
  191. *
  192. * Compute inv(L)*A*inv(L**T)
  193. *
  194. * KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
  195. *
  196. KK = 1
  197. DO 20 K = 1, N
  198. K1K1 = KK + N - K + 1
  199. *
  200. * Update the lower triangle of A(k:n,k:n)
  201. *
  202. AKK = AP( KK )
  203. BKK = BP( KK )
  204. AKK = AKK / BKK**2
  205. AP( KK ) = AKK
  206. IF( K.LT.N ) THEN
  207. CALL DSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
  208. CT = -HALF*AKK
  209. CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  210. CALL DSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
  211. $ BP( KK+1 ), 1, AP( K1K1 ) )
  212. CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  213. CALL DTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
  214. $ BP( K1K1 ), AP( KK+1 ), 1 )
  215. END IF
  216. KK = K1K1
  217. 20 CONTINUE
  218. END IF
  219. ELSE
  220. IF( UPPER ) THEN
  221. *
  222. * Compute U*A*U**T
  223. *
  224. * K1 and KK are the indices of A(1,k) and A(k,k)
  225. *
  226. KK = 0
  227. DO 30 K = 1, N
  228. K1 = KK + 1
  229. KK = KK + K
  230. *
  231. * Update the upper triangle of A(1:k,1:k)
  232. *
  233. AKK = AP( KK )
  234. BKK = BP( KK )
  235. CALL DTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
  236. $ AP( K1 ), 1 )
  237. CT = HALF*AKK
  238. CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  239. CALL DSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
  240. $ AP )
  241. CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  242. CALL DSCAL( K-1, BKK, AP( K1 ), 1 )
  243. AP( KK ) = AKK*BKK**2
  244. 30 CONTINUE
  245. ELSE
  246. *
  247. * Compute L**T *A*L
  248. *
  249. * JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
  250. *
  251. JJ = 1
  252. DO 40 J = 1, N
  253. J1J1 = JJ + N - J + 1
  254. *
  255. * Compute the j-th column of the lower triangle of A
  256. *
  257. AJJ = AP( JJ )
  258. BJJ = BP( JJ )
  259. AP( JJ ) = AJJ*BJJ + DDOT( N-J, AP( JJ+1 ), 1,
  260. $ BP( JJ+1 ), 1 )
  261. CALL DSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
  262. CALL DSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
  263. $ ONE, AP( JJ+1 ), 1 )
  264. CALL DTPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
  265. $ BP( JJ ), AP( JJ ), 1 )
  266. JJ = J1J1
  267. 40 CONTINUE
  268. END IF
  269. END IF
  270. RETURN
  271. *
  272. * End of DSPGST
  273. *
  274. END