You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dspr2.f 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. *> \brief \b DSPR2
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
  12. *
  13. * .. Scalar Arguments ..
  14. * DOUBLE PRECISION ALPHA
  15. * INTEGER INCX,INCY,N
  16. * CHARACTER UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION AP(*),X(*),Y(*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> DSPR2 performs the symmetric rank 2 operation
  29. *>
  30. *> A := alpha*x*y**T + alpha*y*x**T + A,
  31. *>
  32. *> where alpha is a scalar, x and y are n element vectors and A is an
  33. *> n by n symmetric matrix, supplied in packed form.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] UPLO
  40. *> \verbatim
  41. *> UPLO is CHARACTER*1
  42. *> On entry, UPLO specifies whether the upper or lower
  43. *> triangular part of the matrix A is supplied in the packed
  44. *> array AP as follows:
  45. *>
  46. *> UPLO = 'U' or 'u' The upper triangular part of A is
  47. *> supplied in AP.
  48. *>
  49. *> UPLO = 'L' or 'l' The lower triangular part of A is
  50. *> supplied in AP.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> On entry, N specifies the order of the matrix A.
  57. *> N must be at least zero.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] ALPHA
  61. *> \verbatim
  62. *> ALPHA is DOUBLE PRECISION.
  63. *> On entry, ALPHA specifies the scalar alpha.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] X
  67. *> \verbatim
  68. *> X is DOUBLE PRECISION array of dimension at least
  69. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  70. *> Before entry, the incremented array X must contain the n
  71. *> element vector x.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] INCX
  75. *> \verbatim
  76. *> INCX is INTEGER
  77. *> On entry, INCX specifies the increment for the elements of
  78. *> X. INCX must not be zero.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] Y
  82. *> \verbatim
  83. *> Y is DOUBLE PRECISION array of dimension at least
  84. *> ( 1 + ( n - 1 )*abs( INCY ) ).
  85. *> Before entry, the incremented array Y must contain the n
  86. *> element vector y.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] INCY
  90. *> \verbatim
  91. *> INCY is INTEGER
  92. *> On entry, INCY specifies the increment for the elements of
  93. *> Y. INCY must not be zero.
  94. *> \endverbatim
  95. *>
  96. *> \param[in,out] AP
  97. *> \verbatim
  98. *> AP is DOUBLE PRECISION array of DIMENSION at least
  99. *> ( ( n*( n + 1 ) )/2 ).
  100. *> Before entry with UPLO = 'U' or 'u', the array AP must
  101. *> contain the upper triangular part of the symmetric matrix
  102. *> packed sequentially, column by column, so that AP( 1 )
  103. *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
  104. *> and a( 2, 2 ) respectively, and so on. On exit, the array
  105. *> AP is overwritten by the upper triangular part of the
  106. *> updated matrix.
  107. *> Before entry with UPLO = 'L' or 'l', the array AP must
  108. *> contain the lower triangular part of the symmetric matrix
  109. *> packed sequentially, column by column, so that AP( 1 )
  110. *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
  111. *> and a( 3, 1 ) respectively, and so on. On exit, the array
  112. *> AP is overwritten by the lower triangular part of the
  113. *> updated matrix.
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \date November 2011
  125. *
  126. *> \ingroup double_blas_level2
  127. *
  128. *> \par Further Details:
  129. * =====================
  130. *>
  131. *> \verbatim
  132. *>
  133. *> Level 2 Blas routine.
  134. *>
  135. *> -- Written on 22-October-1986.
  136. *> Jack Dongarra, Argonne National Lab.
  137. *> Jeremy Du Croz, Nag Central Office.
  138. *> Sven Hammarling, Nag Central Office.
  139. *> Richard Hanson, Sandia National Labs.
  140. *> \endverbatim
  141. *>
  142. * =====================================================================
  143. SUBROUTINE DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
  144. *
  145. * -- Reference BLAS level2 routine (version 3.4.0) --
  146. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  147. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148. * November 2011
  149. *
  150. * .. Scalar Arguments ..
  151. DOUBLE PRECISION ALPHA
  152. INTEGER INCX,INCY,N
  153. CHARACTER UPLO
  154. * ..
  155. * .. Array Arguments ..
  156. DOUBLE PRECISION AP(*),X(*),Y(*)
  157. * ..
  158. *
  159. * =====================================================================
  160. *
  161. * .. Parameters ..
  162. DOUBLE PRECISION ZERO
  163. PARAMETER (ZERO=0.0D+0)
  164. * ..
  165. * .. Local Scalars ..
  166. DOUBLE PRECISION TEMP1,TEMP2
  167. INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
  168. * ..
  169. * .. External Functions ..
  170. LOGICAL LSAME
  171. EXTERNAL LSAME
  172. * ..
  173. * .. External Subroutines ..
  174. EXTERNAL XERBLA
  175. * ..
  176. *
  177. * Test the input parameters.
  178. *
  179. INFO = 0
  180. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  181. INFO = 1
  182. ELSE IF (N.LT.0) THEN
  183. INFO = 2
  184. ELSE IF (INCX.EQ.0) THEN
  185. INFO = 5
  186. ELSE IF (INCY.EQ.0) THEN
  187. INFO = 7
  188. END IF
  189. IF (INFO.NE.0) THEN
  190. CALL XERBLA('DSPR2 ',INFO)
  191. RETURN
  192. END IF
  193. *
  194. * Quick return if possible.
  195. *
  196. IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
  197. *
  198. * Set up the start points in X and Y if the increments are not both
  199. * unity.
  200. *
  201. IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
  202. IF (INCX.GT.0) THEN
  203. KX = 1
  204. ELSE
  205. KX = 1 - (N-1)*INCX
  206. END IF
  207. IF (INCY.GT.0) THEN
  208. KY = 1
  209. ELSE
  210. KY = 1 - (N-1)*INCY
  211. END IF
  212. JX = KX
  213. JY = KY
  214. END IF
  215. *
  216. * Start the operations. In this version the elements of the array AP
  217. * are accessed sequentially with one pass through AP.
  218. *
  219. KK = 1
  220. IF (LSAME(UPLO,'U')) THEN
  221. *
  222. * Form A when upper triangle is stored in AP.
  223. *
  224. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  225. DO 20 J = 1,N
  226. IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  227. TEMP1 = ALPHA*Y(J)
  228. TEMP2 = ALPHA*X(J)
  229. K = KK
  230. DO 10 I = 1,J
  231. AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
  232. K = K + 1
  233. 10 CONTINUE
  234. END IF
  235. KK = KK + J
  236. 20 CONTINUE
  237. ELSE
  238. DO 40 J = 1,N
  239. IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  240. TEMP1 = ALPHA*Y(JY)
  241. TEMP2 = ALPHA*X(JX)
  242. IX = KX
  243. IY = KY
  244. DO 30 K = KK,KK + J - 1
  245. AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
  246. IX = IX + INCX
  247. IY = IY + INCY
  248. 30 CONTINUE
  249. END IF
  250. JX = JX + INCX
  251. JY = JY + INCY
  252. KK = KK + J
  253. 40 CONTINUE
  254. END IF
  255. ELSE
  256. *
  257. * Form A when lower triangle is stored in AP.
  258. *
  259. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  260. DO 60 J = 1,N
  261. IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  262. TEMP1 = ALPHA*Y(J)
  263. TEMP2 = ALPHA*X(J)
  264. K = KK
  265. DO 50 I = J,N
  266. AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
  267. K = K + 1
  268. 50 CONTINUE
  269. END IF
  270. KK = KK + N - J + 1
  271. 60 CONTINUE
  272. ELSE
  273. DO 80 J = 1,N
  274. IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  275. TEMP1 = ALPHA*Y(JY)
  276. TEMP2 = ALPHA*X(JX)
  277. IX = JX
  278. IY = JY
  279. DO 70 K = KK,KK + N - J
  280. AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
  281. IX = IX + INCX
  282. IY = IY + INCY
  283. 70 CONTINUE
  284. END IF
  285. JX = JX + INCX
  286. JY = JY + INCY
  287. KK = KK + N - J + 1
  288. 80 CONTINUE
  289. END IF
  290. END IF
  291. *
  292. RETURN
  293. *
  294. * End of DSPR2 .
  295. *
  296. END