You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhptrf.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. *> \brief \b ZHPTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHPTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZHPTRF computes the factorization of a complex Hermitian packed
  39. *> matrix A using the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**H or A = L*D*L**H
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, and D is Hermitian and block diagonal with
  45. *> 1-by-1 and 2-by-2 diagonal blocks.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] AP
  65. *> \verbatim
  66. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  67. *> On entry, the upper or lower triangle of the Hermitian matrix
  68. *> A, packed columnwise in a linear array. The j-th column of A
  69. *> is stored in the array AP as follows:
  70. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  71. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  72. *>
  73. *> On exit, the block diagonal matrix D and the multipliers used
  74. *> to obtain the factor U or L, stored as a packed triangular
  75. *> matrix overwriting A (see below for further details).
  76. *> \endverbatim
  77. *>
  78. *> \param[out] IPIV
  79. *> \verbatim
  80. *> IPIV is INTEGER array, dimension (N)
  81. *> Details of the interchanges and the block structure of D.
  82. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  83. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  84. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  85. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  86. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  87. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  88. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] INFO
  92. *> \verbatim
  93. *> INFO is INTEGER
  94. *> = 0: successful exit
  95. *> < 0: if INFO = -i, the i-th argument had an illegal value
  96. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  97. *> has been completed, but the block diagonal matrix D is
  98. *> exactly singular, and division by zero will occur if it
  99. *> is used to solve a system of equations.
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \date December 2016
  111. *
  112. *> \ingroup complex16OTHERcomputational
  113. *
  114. *> \par Further Details:
  115. * =====================
  116. *>
  117. *> \verbatim
  118. *>
  119. *> If UPLO = 'U', then A = U*D*U**H, where
  120. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  121. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  122. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  123. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  124. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  125. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  126. *>
  127. *> ( I v 0 ) k-s
  128. *> U(k) = ( 0 I 0 ) s
  129. *> ( 0 0 I ) n-k
  130. *> k-s s n-k
  131. *>
  132. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  133. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  134. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  135. *>
  136. *> If UPLO = 'L', then A = L*D*L**H, where
  137. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  138. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  139. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  140. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  141. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  142. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  143. *>
  144. *> ( I 0 0 ) k-1
  145. *> L(k) = ( 0 I 0 ) s
  146. *> ( 0 v I ) n-k-s+1
  147. *> k-1 s n-k-s+1
  148. *>
  149. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  150. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  151. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  152. *> \endverbatim
  153. *
  154. *> \par Contributors:
  155. * ==================
  156. *>
  157. *> J. Lewis, Boeing Computer Services Company
  158. *
  159. * =====================================================================
  160. SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
  161. *
  162. * -- LAPACK computational routine (version 3.7.0) --
  163. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  164. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165. * December 2016
  166. *
  167. * .. Scalar Arguments ..
  168. CHARACTER UPLO
  169. INTEGER INFO, N
  170. * ..
  171. * .. Array Arguments ..
  172. INTEGER IPIV( * )
  173. COMPLEX*16 AP( * )
  174. * ..
  175. *
  176. * =====================================================================
  177. *
  178. * .. Parameters ..
  179. DOUBLE PRECISION ZERO, ONE
  180. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  181. DOUBLE PRECISION EIGHT, SEVTEN
  182. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  183. * ..
  184. * .. Local Scalars ..
  185. LOGICAL UPPER
  186. INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  187. $ KSTEP, KX, NPP
  188. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
  189. $ TT
  190. COMPLEX*16 D12, D21, T, WK, WKM1, WKP1, ZDUM
  191. * ..
  192. * .. External Functions ..
  193. LOGICAL LSAME
  194. INTEGER IZAMAX
  195. DOUBLE PRECISION DLAPY2
  196. EXTERNAL LSAME, IZAMAX, DLAPY2
  197. * ..
  198. * .. External Subroutines ..
  199. EXTERNAL XERBLA, ZDSCAL, ZHPR, ZSWAP
  200. * ..
  201. * .. Intrinsic Functions ..
  202. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  203. * ..
  204. * .. Statement Functions ..
  205. DOUBLE PRECISION CABS1
  206. * ..
  207. * .. Statement Function definitions ..
  208. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  209. * ..
  210. * .. Executable Statements ..
  211. *
  212. * Test the input parameters.
  213. *
  214. INFO = 0
  215. UPPER = LSAME( UPLO, 'U' )
  216. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  217. INFO = -1
  218. ELSE IF( N.LT.0 ) THEN
  219. INFO = -2
  220. END IF
  221. IF( INFO.NE.0 ) THEN
  222. CALL XERBLA( 'ZHPTRF', -INFO )
  223. RETURN
  224. END IF
  225. *
  226. * Initialize ALPHA for use in choosing pivot block size.
  227. *
  228. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  229. *
  230. IF( UPPER ) THEN
  231. *
  232. * Factorize A as U*D*U**H using the upper triangle of A
  233. *
  234. * K is the main loop index, decreasing from N to 1 in steps of
  235. * 1 or 2
  236. *
  237. K = N
  238. KC = ( N-1 )*N / 2 + 1
  239. 10 CONTINUE
  240. KNC = KC
  241. *
  242. * If K < 1, exit from loop
  243. *
  244. IF( K.LT.1 )
  245. $ GO TO 110
  246. KSTEP = 1
  247. *
  248. * Determine rows and columns to be interchanged and whether
  249. * a 1-by-1 or 2-by-2 pivot block will be used
  250. *
  251. ABSAKK = ABS( DBLE( AP( KC+K-1 ) ) )
  252. *
  253. * IMAX is the row-index of the largest off-diagonal element in
  254. * column K, and COLMAX is its absolute value
  255. *
  256. IF( K.GT.1 ) THEN
  257. IMAX = IZAMAX( K-1, AP( KC ), 1 )
  258. COLMAX = CABS1( AP( KC+IMAX-1 ) )
  259. ELSE
  260. COLMAX = ZERO
  261. END IF
  262. *
  263. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  264. *
  265. * Column K is zero: set INFO and continue
  266. *
  267. IF( INFO.EQ.0 )
  268. $ INFO = K
  269. KP = K
  270. AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  271. ELSE
  272. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  273. *
  274. * no interchange, use 1-by-1 pivot block
  275. *
  276. KP = K
  277. ELSE
  278. *
  279. * JMAX is the column-index of the largest off-diagonal
  280. * element in row IMAX, and ROWMAX is its absolute value
  281. *
  282. ROWMAX = ZERO
  283. JMAX = IMAX
  284. KX = IMAX*( IMAX+1 ) / 2 + IMAX
  285. DO 20 J = IMAX + 1, K
  286. IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  287. ROWMAX = CABS1( AP( KX ) )
  288. JMAX = J
  289. END IF
  290. KX = KX + J
  291. 20 CONTINUE
  292. KPC = ( IMAX-1 )*IMAX / 2 + 1
  293. IF( IMAX.GT.1 ) THEN
  294. JMAX = IZAMAX( IMAX-1, AP( KPC ), 1 )
  295. ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-1 ) ) )
  296. END IF
  297. *
  298. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  299. *
  300. * no interchange, use 1-by-1 pivot block
  301. *
  302. KP = K
  303. ELSE IF( ABS( DBLE( AP( KPC+IMAX-1 ) ) ).GE.ALPHA*
  304. $ ROWMAX ) THEN
  305. *
  306. * interchange rows and columns K and IMAX, use 1-by-1
  307. * pivot block
  308. *
  309. KP = IMAX
  310. ELSE
  311. *
  312. * interchange rows and columns K-1 and IMAX, use 2-by-2
  313. * pivot block
  314. *
  315. KP = IMAX
  316. KSTEP = 2
  317. END IF
  318. END IF
  319. *
  320. KK = K - KSTEP + 1
  321. IF( KSTEP.EQ.2 )
  322. $ KNC = KNC - K + 1
  323. IF( KP.NE.KK ) THEN
  324. *
  325. * Interchange rows and columns KK and KP in the leading
  326. * submatrix A(1:k,1:k)
  327. *
  328. CALL ZSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  329. KX = KPC + KP - 1
  330. DO 30 J = KP + 1, KK - 1
  331. KX = KX + J - 1
  332. T = DCONJG( AP( KNC+J-1 ) )
  333. AP( KNC+J-1 ) = DCONJG( AP( KX ) )
  334. AP( KX ) = T
  335. 30 CONTINUE
  336. AP( KX+KK-1 ) = DCONJG( AP( KX+KK-1 ) )
  337. R1 = DBLE( AP( KNC+KK-1 ) )
  338. AP( KNC+KK-1 ) = DBLE( AP( KPC+KP-1 ) )
  339. AP( KPC+KP-1 ) = R1
  340. IF( KSTEP.EQ.2 ) THEN
  341. AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  342. T = AP( KC+K-2 )
  343. AP( KC+K-2 ) = AP( KC+KP-1 )
  344. AP( KC+KP-1 ) = T
  345. END IF
  346. ELSE
  347. AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  348. IF( KSTEP.EQ.2 )
  349. $ AP( KC-1 ) = DBLE( AP( KC-1 ) )
  350. END IF
  351. *
  352. * Update the leading submatrix
  353. *
  354. IF( KSTEP.EQ.1 ) THEN
  355. *
  356. * 1-by-1 pivot block D(k): column k now holds
  357. *
  358. * W(k) = U(k)*D(k)
  359. *
  360. * where U(k) is the k-th column of U
  361. *
  362. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  363. *
  364. * A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
  365. *
  366. R1 = ONE / DBLE( AP( KC+K-1 ) )
  367. CALL ZHPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  368. *
  369. * Store U(k) in column k
  370. *
  371. CALL ZDSCAL( K-1, R1, AP( KC ), 1 )
  372. ELSE
  373. *
  374. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  375. *
  376. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  377. *
  378. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  379. * of U
  380. *
  381. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  382. *
  383. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
  384. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
  385. *
  386. IF( K.GT.2 ) THEN
  387. *
  388. D = DLAPY2( DBLE( AP( K-1+( K-1 )*K / 2 ) ),
  389. $ DIMAG( AP( K-1+( K-1 )*K / 2 ) ) )
  390. D22 = DBLE( AP( K-1+( K-2 )*( K-1 ) / 2 ) ) / D
  391. D11 = DBLE( AP( K+( K-1 )*K / 2 ) ) / D
  392. TT = ONE / ( D11*D22-ONE )
  393. D12 = AP( K-1+( K-1 )*K / 2 ) / D
  394. D = TT / D
  395. *
  396. DO 50 J = K - 2, 1, -1
  397. WKM1 = D*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  398. $ DCONJG( D12 )*AP( J+( K-1 )*K / 2 ) )
  399. WK = D*( D22*AP( J+( K-1 )*K / 2 )-D12*
  400. $ AP( J+( K-2 )*( K-1 ) / 2 ) )
  401. DO 40 I = J, 1, -1
  402. AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  403. $ AP( I+( K-1 )*K / 2 )*DCONJG( WK ) -
  404. $ AP( I+( K-2 )*( K-1 ) / 2 )*DCONJG( WKM1 )
  405. 40 CONTINUE
  406. AP( J+( K-1 )*K / 2 ) = WK
  407. AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  408. AP( J+( J-1 )*J / 2 ) = DCMPLX( DBLE( AP( J+( J-
  409. $ 1 )*J / 2 ) ), 0.0D+0 )
  410. 50 CONTINUE
  411. *
  412. END IF
  413. *
  414. END IF
  415. END IF
  416. *
  417. * Store details of the interchanges in IPIV
  418. *
  419. IF( KSTEP.EQ.1 ) THEN
  420. IPIV( K ) = KP
  421. ELSE
  422. IPIV( K ) = -KP
  423. IPIV( K-1 ) = -KP
  424. END IF
  425. *
  426. * Decrease K and return to the start of the main loop
  427. *
  428. K = K - KSTEP
  429. KC = KNC - K
  430. GO TO 10
  431. *
  432. ELSE
  433. *
  434. * Factorize A as L*D*L**H using the lower triangle of A
  435. *
  436. * K is the main loop index, increasing from 1 to N in steps of
  437. * 1 or 2
  438. *
  439. K = 1
  440. KC = 1
  441. NPP = N*( N+1 ) / 2
  442. 60 CONTINUE
  443. KNC = KC
  444. *
  445. * If K > N, exit from loop
  446. *
  447. IF( K.GT.N )
  448. $ GO TO 110
  449. KSTEP = 1
  450. *
  451. * Determine rows and columns to be interchanged and whether
  452. * a 1-by-1 or 2-by-2 pivot block will be used
  453. *
  454. ABSAKK = ABS( DBLE( AP( KC ) ) )
  455. *
  456. * IMAX is the row-index of the largest off-diagonal element in
  457. * column K, and COLMAX is its absolute value
  458. *
  459. IF( K.LT.N ) THEN
  460. IMAX = K + IZAMAX( N-K, AP( KC+1 ), 1 )
  461. COLMAX = CABS1( AP( KC+IMAX-K ) )
  462. ELSE
  463. COLMAX = ZERO
  464. END IF
  465. *
  466. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  467. *
  468. * Column K is zero: set INFO and continue
  469. *
  470. IF( INFO.EQ.0 )
  471. $ INFO = K
  472. KP = K
  473. AP( KC ) = DBLE( AP( KC ) )
  474. ELSE
  475. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  476. *
  477. * no interchange, use 1-by-1 pivot block
  478. *
  479. KP = K
  480. ELSE
  481. *
  482. * JMAX is the column-index of the largest off-diagonal
  483. * element in row IMAX, and ROWMAX is its absolute value
  484. *
  485. ROWMAX = ZERO
  486. KX = KC + IMAX - K
  487. DO 70 J = K, IMAX - 1
  488. IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  489. ROWMAX = CABS1( AP( KX ) )
  490. JMAX = J
  491. END IF
  492. KX = KX + N - J
  493. 70 CONTINUE
  494. KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  495. IF( IMAX.LT.N ) THEN
  496. JMAX = IMAX + IZAMAX( N-IMAX, AP( KPC+1 ), 1 )
  497. ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-IMAX ) ) )
  498. END IF
  499. *
  500. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  501. *
  502. * no interchange, use 1-by-1 pivot block
  503. *
  504. KP = K
  505. ELSE IF( ABS( DBLE( AP( KPC ) ) ).GE.ALPHA*ROWMAX ) THEN
  506. *
  507. * interchange rows and columns K and IMAX, use 1-by-1
  508. * pivot block
  509. *
  510. KP = IMAX
  511. ELSE
  512. *
  513. * interchange rows and columns K+1 and IMAX, use 2-by-2
  514. * pivot block
  515. *
  516. KP = IMAX
  517. KSTEP = 2
  518. END IF
  519. END IF
  520. *
  521. KK = K + KSTEP - 1
  522. IF( KSTEP.EQ.2 )
  523. $ KNC = KNC + N - K + 1
  524. IF( KP.NE.KK ) THEN
  525. *
  526. * Interchange rows and columns KK and KP in the trailing
  527. * submatrix A(k:n,k:n)
  528. *
  529. IF( KP.LT.N )
  530. $ CALL ZSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  531. $ 1 )
  532. KX = KNC + KP - KK
  533. DO 80 J = KK + 1, KP - 1
  534. KX = KX + N - J + 1
  535. T = DCONJG( AP( KNC+J-KK ) )
  536. AP( KNC+J-KK ) = DCONJG( AP( KX ) )
  537. AP( KX ) = T
  538. 80 CONTINUE
  539. AP( KNC+KP-KK ) = DCONJG( AP( KNC+KP-KK ) )
  540. R1 = DBLE( AP( KNC ) )
  541. AP( KNC ) = DBLE( AP( KPC ) )
  542. AP( KPC ) = R1
  543. IF( KSTEP.EQ.2 ) THEN
  544. AP( KC ) = DBLE( AP( KC ) )
  545. T = AP( KC+1 )
  546. AP( KC+1 ) = AP( KC+KP-K )
  547. AP( KC+KP-K ) = T
  548. END IF
  549. ELSE
  550. AP( KC ) = DBLE( AP( KC ) )
  551. IF( KSTEP.EQ.2 )
  552. $ AP( KNC ) = DBLE( AP( KNC ) )
  553. END IF
  554. *
  555. * Update the trailing submatrix
  556. *
  557. IF( KSTEP.EQ.1 ) THEN
  558. *
  559. * 1-by-1 pivot block D(k): column k now holds
  560. *
  561. * W(k) = L(k)*D(k)
  562. *
  563. * where L(k) is the k-th column of L
  564. *
  565. IF( K.LT.N ) THEN
  566. *
  567. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  568. *
  569. * A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
  570. *
  571. R1 = ONE / DBLE( AP( KC ) )
  572. CALL ZHPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  573. $ AP( KC+N-K+1 ) )
  574. *
  575. * Store L(k) in column K
  576. *
  577. CALL ZDSCAL( N-K, R1, AP( KC+1 ), 1 )
  578. END IF
  579. ELSE
  580. *
  581. * 2-by-2 pivot block D(k): columns K and K+1 now hold
  582. *
  583. * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  584. *
  585. * where L(k) and L(k+1) are the k-th and (k+1)-th columns
  586. * of L
  587. *
  588. IF( K.LT.N-1 ) THEN
  589. *
  590. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  591. *
  592. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
  593. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
  594. *
  595. * where L(k) and L(k+1) are the k-th and (k+1)-th
  596. * columns of L
  597. *
  598. D = DLAPY2( DBLE( AP( K+1+( K-1 )*( 2*N-K ) / 2 ) ),
  599. $ DIMAG( AP( K+1+( K-1 )*( 2*N-K ) / 2 ) ) )
  600. D11 = DBLE( AP( K+1+K*( 2*N-K-1 ) / 2 ) ) / D
  601. D22 = DBLE( AP( K+( K-1 )*( 2*N-K ) / 2 ) ) / D
  602. TT = ONE / ( D11*D22-ONE )
  603. D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 ) / D
  604. D = TT / D
  605. *
  606. DO 100 J = K + 2, N
  607. WK = D*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-D21*
  608. $ AP( J+K*( 2*N-K-1 ) / 2 ) )
  609. WKP1 = D*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  610. $ DCONJG( D21 )*AP( J+( K-1 )*( 2*N-K ) /
  611. $ 2 ) )
  612. DO 90 I = J, N
  613. AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  614. $ ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  615. $ 2 )*DCONJG( WK ) - AP( I+K*( 2*N-K-1 ) / 2 )*
  616. $ DCONJG( WKP1 )
  617. 90 CONTINUE
  618. AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  619. AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  620. AP( J+( J-1 )*( 2*N-J ) / 2 )
  621. $ = DCMPLX( DBLE( AP( J+( J-1 )*( 2*N-J ) / 2 ) ),
  622. $ 0.0D+0 )
  623. 100 CONTINUE
  624. END IF
  625. END IF
  626. END IF
  627. *
  628. * Store details of the interchanges in IPIV
  629. *
  630. IF( KSTEP.EQ.1 ) THEN
  631. IPIV( K ) = KP
  632. ELSE
  633. IPIV( K ) = -KP
  634. IPIV( K+1 ) = -KP
  635. END IF
  636. *
  637. * Increase K and return to the start of the main loop
  638. *
  639. K = K + KSTEP
  640. KC = KNC + N - K + 2
  641. GO TO 60
  642. *
  643. END IF
  644. *
  645. 110 CONTINUE
  646. RETURN
  647. *
  648. * End of ZHPTRF
  649. *
  650. END