You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgges.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. *> \brief <b> ZGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGGES + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgges.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgges.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgges.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
  22. * SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
  23. * LWORK, RWORK, BWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBVSL, JOBVSR, SORT
  27. * INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
  28. * ..
  29. * .. Array Arguments ..
  30. * LOGICAL BWORK( * )
  31. * DOUBLE PRECISION RWORK( * )
  32. * COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  33. * $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
  34. * $ WORK( * )
  35. * ..
  36. * .. Function Arguments ..
  37. * LOGICAL SELCTG
  38. * EXTERNAL SELCTG
  39. * ..
  40. *
  41. *
  42. *> \par Purpose:
  43. * =============
  44. *>
  45. *> \verbatim
  46. *>
  47. *> ZGGES computes for a pair of N-by-N complex nonsymmetric matrices
  48. *> (A,B), the generalized eigenvalues, the generalized complex Schur
  49. *> form (S, T), and optionally left and/or right Schur vectors (VSL
  50. *> and VSR). This gives the generalized Schur factorization
  51. *>
  52. *> (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
  53. *>
  54. *> where (VSR)**H is the conjugate-transpose of VSR.
  55. *>
  56. *> Optionally, it also orders the eigenvalues so that a selected cluster
  57. *> of eigenvalues appears in the leading diagonal blocks of the upper
  58. *> triangular matrix S and the upper triangular matrix T. The leading
  59. *> columns of VSL and VSR then form an unitary basis for the
  60. *> corresponding left and right eigenspaces (deflating subspaces).
  61. *>
  62. *> (If only the generalized eigenvalues are needed, use the driver
  63. *> ZGGEV instead, which is faster.)
  64. *>
  65. *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
  66. *> or a ratio alpha/beta = w, such that A - w*B is singular. It is
  67. *> usually represented as the pair (alpha,beta), as there is a
  68. *> reasonable interpretation for beta=0, and even for both being zero.
  69. *>
  70. *> A pair of matrices (S,T) is in generalized complex Schur form if S
  71. *> and T are upper triangular and, in addition, the diagonal elements
  72. *> of T are non-negative real numbers.
  73. *> \endverbatim
  74. *
  75. * Arguments:
  76. * ==========
  77. *
  78. *> \param[in] JOBVSL
  79. *> \verbatim
  80. *> JOBVSL is CHARACTER*1
  81. *> = 'N': do not compute the left Schur vectors;
  82. *> = 'V': compute the left Schur vectors.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] JOBVSR
  86. *> \verbatim
  87. *> JOBVSR is CHARACTER*1
  88. *> = 'N': do not compute the right Schur vectors;
  89. *> = 'V': compute the right Schur vectors.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] SORT
  93. *> \verbatim
  94. *> SORT is CHARACTER*1
  95. *> Specifies whether or not to order the eigenvalues on the
  96. *> diagonal of the generalized Schur form.
  97. *> = 'N': Eigenvalues are not ordered;
  98. *> = 'S': Eigenvalues are ordered (see SELCTG).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] SELCTG
  102. *> \verbatim
  103. *> SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments
  104. *> SELCTG must be declared EXTERNAL in the calling subroutine.
  105. *> If SORT = 'N', SELCTG is not referenced.
  106. *> If SORT = 'S', SELCTG is used to select eigenvalues to sort
  107. *> to the top left of the Schur form.
  108. *> An eigenvalue ALPHA(j)/BETA(j) is selected if
  109. *> SELCTG(ALPHA(j),BETA(j)) is true.
  110. *>
  111. *> Note that a selected complex eigenvalue may no longer satisfy
  112. *> SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
  113. *> ordering may change the value of complex eigenvalues
  114. *> (especially if the eigenvalue is ill-conditioned), in this
  115. *> case INFO is set to N+2 (See INFO below).
  116. *> \endverbatim
  117. *>
  118. *> \param[in] N
  119. *> \verbatim
  120. *> N is INTEGER
  121. *> The order of the matrices A, B, VSL, and VSR. N >= 0.
  122. *> \endverbatim
  123. *>
  124. *> \param[in,out] A
  125. *> \verbatim
  126. *> A is COMPLEX*16 array, dimension (LDA, N)
  127. *> On entry, the first of the pair of matrices.
  128. *> On exit, A has been overwritten by its generalized Schur
  129. *> form S.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] LDA
  133. *> \verbatim
  134. *> LDA is INTEGER
  135. *> The leading dimension of A. LDA >= max(1,N).
  136. *> \endverbatim
  137. *>
  138. *> \param[in,out] B
  139. *> \verbatim
  140. *> B is COMPLEX*16 array, dimension (LDB, N)
  141. *> On entry, the second of the pair of matrices.
  142. *> On exit, B has been overwritten by its generalized Schur
  143. *> form T.
  144. *> \endverbatim
  145. *>
  146. *> \param[in] LDB
  147. *> \verbatim
  148. *> LDB is INTEGER
  149. *> The leading dimension of B. LDB >= max(1,N).
  150. *> \endverbatim
  151. *>
  152. *> \param[out] SDIM
  153. *> \verbatim
  154. *> SDIM is INTEGER
  155. *> If SORT = 'N', SDIM = 0.
  156. *> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  157. *> for which SELCTG is true.
  158. *> \endverbatim
  159. *>
  160. *> \param[out] ALPHA
  161. *> \verbatim
  162. *> ALPHA is COMPLEX*16 array, dimension (N)
  163. *> \endverbatim
  164. *>
  165. *> \param[out] BETA
  166. *> \verbatim
  167. *> BETA is COMPLEX*16 array, dimension (N)
  168. *> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
  169. *> generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j),
  170. *> j=1,...,N are the diagonals of the complex Schur form (A,B)
  171. *> output by ZGGES. The BETA(j) will be non-negative real.
  172. *>
  173. *> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
  174. *> underflow, and BETA(j) may even be zero. Thus, the user
  175. *> should avoid naively computing the ratio alpha/beta.
  176. *> However, ALPHA will be always less than and usually
  177. *> comparable with norm(A) in magnitude, and BETA always less
  178. *> than and usually comparable with norm(B).
  179. *> \endverbatim
  180. *>
  181. *> \param[out] VSL
  182. *> \verbatim
  183. *> VSL is COMPLEX*16 array, dimension (LDVSL,N)
  184. *> If JOBVSL = 'V', VSL will contain the left Schur vectors.
  185. *> Not referenced if JOBVSL = 'N'.
  186. *> \endverbatim
  187. *>
  188. *> \param[in] LDVSL
  189. *> \verbatim
  190. *> LDVSL is INTEGER
  191. *> The leading dimension of the matrix VSL. LDVSL >= 1, and
  192. *> if JOBVSL = 'V', LDVSL >= N.
  193. *> \endverbatim
  194. *>
  195. *> \param[out] VSR
  196. *> \verbatim
  197. *> VSR is COMPLEX*16 array, dimension (LDVSR,N)
  198. *> If JOBVSR = 'V', VSR will contain the right Schur vectors.
  199. *> Not referenced if JOBVSR = 'N'.
  200. *> \endverbatim
  201. *>
  202. *> \param[in] LDVSR
  203. *> \verbatim
  204. *> LDVSR is INTEGER
  205. *> The leading dimension of the matrix VSR. LDVSR >= 1, and
  206. *> if JOBVSR = 'V', LDVSR >= N.
  207. *> \endverbatim
  208. *>
  209. *> \param[out] WORK
  210. *> \verbatim
  211. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  212. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  213. *> \endverbatim
  214. *>
  215. *> \param[in] LWORK
  216. *> \verbatim
  217. *> LWORK is INTEGER
  218. *> The dimension of the array WORK. LWORK >= max(1,2*N).
  219. *> For good performance, LWORK must generally be larger.
  220. *>
  221. *> If LWORK = -1, then a workspace query is assumed; the routine
  222. *> only calculates the optimal size of the WORK array, returns
  223. *> this value as the first entry of the WORK array, and no error
  224. *> message related to LWORK is issued by XERBLA.
  225. *> \endverbatim
  226. *>
  227. *> \param[out] RWORK
  228. *> \verbatim
  229. *> RWORK is DOUBLE PRECISION array, dimension (8*N)
  230. *> \endverbatim
  231. *>
  232. *> \param[out] BWORK
  233. *> \verbatim
  234. *> BWORK is LOGICAL array, dimension (N)
  235. *> Not referenced if SORT = 'N'.
  236. *> \endverbatim
  237. *>
  238. *> \param[out] INFO
  239. *> \verbatim
  240. *> INFO is INTEGER
  241. *> = 0: successful exit
  242. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  243. *> =1,...,N:
  244. *> The QZ iteration failed. (A,B) are not in Schur
  245. *> form, but ALPHA(j) and BETA(j) should be correct for
  246. *> j=INFO+1,...,N.
  247. *> > N: =N+1: other than QZ iteration failed in ZHGEQZ
  248. *> =N+2: after reordering, roundoff changed values of
  249. *> some complex eigenvalues so that leading
  250. *> eigenvalues in the Generalized Schur form no
  251. *> longer satisfy SELCTG=.TRUE. This could also
  252. *> be caused due to scaling.
  253. *> =N+3: reordering failed in ZTGSEN.
  254. *> \endverbatim
  255. *
  256. * Authors:
  257. * ========
  258. *
  259. *> \author Univ. of Tennessee
  260. *> \author Univ. of California Berkeley
  261. *> \author Univ. of Colorado Denver
  262. *> \author NAG Ltd.
  263. *
  264. *> \date December 2016
  265. *
  266. *> \ingroup complex16GEeigen
  267. *
  268. * =====================================================================
  269. SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
  270. $ SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
  271. $ LWORK, RWORK, BWORK, INFO )
  272. *
  273. * -- LAPACK driver routine (version 3.7.0) --
  274. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  275. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  276. * December 2016
  277. *
  278. * .. Scalar Arguments ..
  279. CHARACTER JOBVSL, JOBVSR, SORT
  280. INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
  281. * ..
  282. * .. Array Arguments ..
  283. LOGICAL BWORK( * )
  284. DOUBLE PRECISION RWORK( * )
  285. COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  286. $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
  287. $ WORK( * )
  288. * ..
  289. * .. Function Arguments ..
  290. LOGICAL SELCTG
  291. EXTERNAL SELCTG
  292. * ..
  293. *
  294. * =====================================================================
  295. *
  296. * .. Parameters ..
  297. DOUBLE PRECISION ZERO, ONE
  298. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  299. COMPLEX*16 CZERO, CONE
  300. PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
  301. $ CONE = ( 1.0D0, 0.0D0 ) )
  302. * ..
  303. * .. Local Scalars ..
  304. LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
  305. $ LQUERY, WANTST
  306. INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
  307. $ ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKMIN,
  308. $ LWKOPT
  309. DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
  310. $ PVSR, SMLNUM
  311. * ..
  312. * .. Local Arrays ..
  313. INTEGER IDUM( 1 )
  314. DOUBLE PRECISION DIF( 2 )
  315. * ..
  316. * .. External Subroutines ..
  317. EXTERNAL DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
  318. $ ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
  319. $ ZUNMQR
  320. * ..
  321. * .. External Functions ..
  322. LOGICAL LSAME
  323. INTEGER ILAENV
  324. DOUBLE PRECISION DLAMCH, ZLANGE
  325. EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
  326. * ..
  327. * .. Intrinsic Functions ..
  328. INTRINSIC MAX, SQRT
  329. * ..
  330. * .. Executable Statements ..
  331. *
  332. * Decode the input arguments
  333. *
  334. IF( LSAME( JOBVSL, 'N' ) ) THEN
  335. IJOBVL = 1
  336. ILVSL = .FALSE.
  337. ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  338. IJOBVL = 2
  339. ILVSL = .TRUE.
  340. ELSE
  341. IJOBVL = -1
  342. ILVSL = .FALSE.
  343. END IF
  344. *
  345. IF( LSAME( JOBVSR, 'N' ) ) THEN
  346. IJOBVR = 1
  347. ILVSR = .FALSE.
  348. ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  349. IJOBVR = 2
  350. ILVSR = .TRUE.
  351. ELSE
  352. IJOBVR = -1
  353. ILVSR = .FALSE.
  354. END IF
  355. *
  356. WANTST = LSAME( SORT, 'S' )
  357. *
  358. * Test the input arguments
  359. *
  360. INFO = 0
  361. LQUERY = ( LWORK.EQ.-1 )
  362. IF( IJOBVL.LE.0 ) THEN
  363. INFO = -1
  364. ELSE IF( IJOBVR.LE.0 ) THEN
  365. INFO = -2
  366. ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  367. INFO = -3
  368. ELSE IF( N.LT.0 ) THEN
  369. INFO = -5
  370. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  371. INFO = -7
  372. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  373. INFO = -9
  374. ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  375. INFO = -14
  376. ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  377. INFO = -16
  378. END IF
  379. *
  380. * Compute workspace
  381. * (Note: Comments in the code beginning "Workspace:" describe the
  382. * minimal amount of workspace needed at that point in the code,
  383. * as well as the preferred amount for good performance.
  384. * NB refers to the optimal block size for the immediately
  385. * following subroutine, as returned by ILAENV.)
  386. *
  387. IF( INFO.EQ.0 ) THEN
  388. LWKMIN = MAX( 1, 2*N )
  389. LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
  390. LWKOPT = MAX( LWKOPT, N +
  391. $ N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) )
  392. IF( ILVSL ) THEN
  393. LWKOPT = MAX( LWKOPT, N +
  394. $ N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
  395. END IF
  396. WORK( 1 ) = LWKOPT
  397. *
  398. IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  399. $ INFO = -18
  400. END IF
  401. *
  402. IF( INFO.NE.0 ) THEN
  403. CALL XERBLA( 'ZGGES ', -INFO )
  404. RETURN
  405. ELSE IF( LQUERY ) THEN
  406. RETURN
  407. END IF
  408. *
  409. * Quick return if possible
  410. *
  411. IF( N.EQ.0 ) THEN
  412. SDIM = 0
  413. RETURN
  414. END IF
  415. *
  416. * Get machine constants
  417. *
  418. EPS = DLAMCH( 'P' )
  419. SMLNUM = DLAMCH( 'S' )
  420. BIGNUM = ONE / SMLNUM
  421. CALL DLABAD( SMLNUM, BIGNUM )
  422. SMLNUM = SQRT( SMLNUM ) / EPS
  423. BIGNUM = ONE / SMLNUM
  424. *
  425. * Scale A if max element outside range [SMLNUM,BIGNUM]
  426. *
  427. ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  428. ILASCL = .FALSE.
  429. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  430. ANRMTO = SMLNUM
  431. ILASCL = .TRUE.
  432. ELSE IF( ANRM.GT.BIGNUM ) THEN
  433. ANRMTO = BIGNUM
  434. ILASCL = .TRUE.
  435. END IF
  436. *
  437. IF( ILASCL )
  438. $ CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  439. *
  440. * Scale B if max element outside range [SMLNUM,BIGNUM]
  441. *
  442. BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  443. ILBSCL = .FALSE.
  444. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  445. BNRMTO = SMLNUM
  446. ILBSCL = .TRUE.
  447. ELSE IF( BNRM.GT.BIGNUM ) THEN
  448. BNRMTO = BIGNUM
  449. ILBSCL = .TRUE.
  450. END IF
  451. *
  452. IF( ILBSCL )
  453. $ CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  454. *
  455. * Permute the matrix to make it more nearly triangular
  456. * (Real Workspace: need 6*N)
  457. *
  458. ILEFT = 1
  459. IRIGHT = N + 1
  460. IRWRK = IRIGHT + N
  461. CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  462. $ RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
  463. *
  464. * Reduce B to triangular form (QR decomposition of B)
  465. * (Complex Workspace: need N, prefer N*NB)
  466. *
  467. IROWS = IHI + 1 - ILO
  468. ICOLS = N + 1 - ILO
  469. ITAU = 1
  470. IWRK = ITAU + IROWS
  471. CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  472. $ WORK( IWRK ), LWORK+1-IWRK, IERR )
  473. *
  474. * Apply the orthogonal transformation to matrix A
  475. * (Complex Workspace: need N, prefer N*NB)
  476. *
  477. CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  478. $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  479. $ LWORK+1-IWRK, IERR )
  480. *
  481. * Initialize VSL
  482. * (Complex Workspace: need N, prefer N*NB)
  483. *
  484. IF( ILVSL ) THEN
  485. CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
  486. IF( IROWS.GT.1 ) THEN
  487. CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  488. $ VSL( ILO+1, ILO ), LDVSL )
  489. END IF
  490. CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  491. $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  492. END IF
  493. *
  494. * Initialize VSR
  495. *
  496. IF( ILVSR )
  497. $ CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
  498. *
  499. * Reduce to generalized Hessenberg form
  500. * (Workspace: none needed)
  501. *
  502. CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  503. $ LDVSL, VSR, LDVSR, IERR )
  504. *
  505. SDIM = 0
  506. *
  507. * Perform QZ algorithm, computing Schur vectors if desired
  508. * (Complex Workspace: need N)
  509. * (Real Workspace: need N)
  510. *
  511. IWRK = ITAU
  512. CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  513. $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
  514. $ LWORK+1-IWRK, RWORK( IRWRK ), IERR )
  515. IF( IERR.NE.0 ) THEN
  516. IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  517. INFO = IERR
  518. ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  519. INFO = IERR - N
  520. ELSE
  521. INFO = N + 1
  522. END IF
  523. GO TO 30
  524. END IF
  525. *
  526. * Sort eigenvalues ALPHA/BETA if desired
  527. * (Workspace: none needed)
  528. *
  529. IF( WANTST ) THEN
  530. *
  531. * Undo scaling on eigenvalues before selecting
  532. *
  533. IF( ILASCL )
  534. $ CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
  535. IF( ILBSCL )
  536. $ CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
  537. *
  538. * Select eigenvalues
  539. *
  540. DO 10 I = 1, N
  541. BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
  542. 10 CONTINUE
  543. *
  544. CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
  545. $ BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
  546. $ DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
  547. IF( IERR.EQ.1 )
  548. $ INFO = N + 3
  549. *
  550. END IF
  551. *
  552. * Apply back-permutation to VSL and VSR
  553. * (Workspace: none needed)
  554. *
  555. IF( ILVSL )
  556. $ CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  557. $ RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
  558. IF( ILVSR )
  559. $ CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  560. $ RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
  561. *
  562. * Undo scaling
  563. *
  564. IF( ILASCL ) THEN
  565. CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
  566. CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
  567. END IF
  568. *
  569. IF( ILBSCL ) THEN
  570. CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
  571. CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  572. END IF
  573. *
  574. IF( WANTST ) THEN
  575. *
  576. * Check if reordering is correct
  577. *
  578. LASTSL = .TRUE.
  579. SDIM = 0
  580. DO 20 I = 1, N
  581. CURSL = SELCTG( ALPHA( I ), BETA( I ) )
  582. IF( CURSL )
  583. $ SDIM = SDIM + 1
  584. IF( CURSL .AND. .NOT.LASTSL )
  585. $ INFO = N + 2
  586. LASTSL = CURSL
  587. 20 CONTINUE
  588. *
  589. END IF
  590. *
  591. 30 CONTINUE
  592. *
  593. WORK( 1 ) = LWKOPT
  594. *
  595. RETURN
  596. *
  597. * End of ZGGES
  598. *
  599. END