|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304 |
- *> \brief \b STREVC3
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download STREVC3 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strevc3.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strevc3.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strevc3.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE STREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL,
- * VR, LDVR, MM, M, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER HOWMNY, SIDE
- * INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N
- * ..
- * .. Array Arguments ..
- * LOGICAL SELECT( * )
- * REAL T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> STREVC3 computes some or all of the right and/or left eigenvectors of
- *> a real upper quasi-triangular matrix T.
- *> Matrices of this type are produced by the Schur factorization of
- *> a real general matrix: A = Q*T*Q**T, as computed by SHSEQR.
- *>
- *> The right eigenvector x and the left eigenvector y of T corresponding
- *> to an eigenvalue w are defined by:
- *>
- *> T*x = w*x, (y**T)*T = w*(y**T)
- *>
- *> where y**T denotes the transpose of the vector y.
- *> The eigenvalues are not input to this routine, but are read directly
- *> from the diagonal blocks of T.
- *>
- *> This routine returns the matrices X and/or Y of right and left
- *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
- *> input matrix. If Q is the orthogonal factor that reduces a matrix
- *> A to Schur form T, then Q*X and Q*Y are the matrices of right and
- *> left eigenvectors of A.
- *>
- *> This uses a Level 3 BLAS version of the back transformation.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'R': compute right eigenvectors only;
- *> = 'L': compute left eigenvectors only;
- *> = 'B': compute both right and left eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] HOWMNY
- *> \verbatim
- *> HOWMNY is CHARACTER*1
- *> = 'A': compute all right and/or left eigenvectors;
- *> = 'B': compute all right and/or left eigenvectors,
- *> backtransformed by the matrices in VR and/or VL;
- *> = 'S': compute selected right and/or left eigenvectors,
- *> as indicated by the logical array SELECT.
- *> \endverbatim
- *>
- *> \param[in,out] SELECT
- *> \verbatim
- *> SELECT is LOGICAL array, dimension (N)
- *> If HOWMNY = 'S', SELECT specifies the eigenvectors to be
- *> computed.
- *> If w(j) is a real eigenvalue, the corresponding real
- *> eigenvector is computed if SELECT(j) is .TRUE..
- *> If w(j) and w(j+1) are the real and imaginary parts of a
- *> complex eigenvalue, the corresponding complex eigenvector is
- *> computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
- *> on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
- *> .FALSE..
- *> Not referenced if HOWMNY = 'A' or 'B'.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix T. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is REAL array, dimension (LDT,N)
- *> The upper quasi-triangular matrix T in Schur canonical form.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] VL
- *> \verbatim
- *> VL is REAL array, dimension (LDVL,MM)
- *> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
- *> contain an N-by-N matrix Q (usually the orthogonal matrix Q
- *> of Schur vectors returned by SHSEQR).
- *> On exit, if SIDE = 'L' or 'B', VL contains:
- *> if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
- *> if HOWMNY = 'B', the matrix Q*Y;
- *> if HOWMNY = 'S', the left eigenvectors of T specified by
- *> SELECT, stored consecutively in the columns
- *> of VL, in the same order as their
- *> eigenvalues.
- *> A complex eigenvector corresponding to a complex eigenvalue
- *> is stored in two consecutive columns, the first holding the
- *> real part, and the second the imaginary part.
- *> Not referenced if SIDE = 'R'.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> The leading dimension of the array VL.
- *> LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N.
- *> \endverbatim
- *>
- *> \param[in,out] VR
- *> \verbatim
- *> VR is REAL array, dimension (LDVR,MM)
- *> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
- *> contain an N-by-N matrix Q (usually the orthogonal matrix Q
- *> of Schur vectors returned by SHSEQR).
- *> On exit, if SIDE = 'R' or 'B', VR contains:
- *> if HOWMNY = 'A', the matrix X of right eigenvectors of T;
- *> if HOWMNY = 'B', the matrix Q*X;
- *> if HOWMNY = 'S', the right eigenvectors of T specified by
- *> SELECT, stored consecutively in the columns
- *> of VR, in the same order as their
- *> eigenvalues.
- *> A complex eigenvector corresponding to a complex eigenvalue
- *> is stored in two consecutive columns, the first holding the
- *> real part and the second the imaginary part.
- *> Not referenced if SIDE = 'L'.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> The leading dimension of the array VR.
- *> LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N.
- *> \endverbatim
- *>
- *> \param[in] MM
- *> \verbatim
- *> MM is INTEGER
- *> The number of columns in the arrays VL and/or VR. MM >= M.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The number of columns in the arrays VL and/or VR actually
- *> used to store the eigenvectors.
- *> If HOWMNY = 'A' or 'B', M is set to N.
- *> Each selected real eigenvector occupies one column and each
- *> selected complex eigenvector occupies two columns.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of array WORK. LWORK >= max(1,3*N).
- *> For optimum performance, LWORK >= N + 2*N*NB, where NB is
- *> the optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2017
- *
- * @generated from dtrevc3.f, fortran d -> s, Tue Apr 19 01:47:44 2016
- *
- *> \ingroup realOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The algorithm used in this program is basically backward (forward)
- *> substitution, with scaling to make the the code robust against
- *> possible overflow.
- *>
- *> Each eigenvector is normalized so that the element of largest
- *> magnitude has magnitude 1; here the magnitude of a complex number
- *> (x,y) is taken to be |x| + |y|.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE STREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL,
- $ VR, LDVR, MM, M, WORK, LWORK, INFO )
- IMPLICIT NONE
- *
- * -- LAPACK computational routine (version 3.8.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2017
- *
- * .. Scalar Arguments ..
- CHARACTER HOWMNY, SIDE
- INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N
- * ..
- * .. Array Arguments ..
- LOGICAL SELECT( * )
- REAL T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- INTEGER NBMIN, NBMAX
- PARAMETER ( NBMIN = 8, NBMAX = 128 )
- * ..
- * .. Local Scalars ..
- LOGICAL ALLV, BOTHV, LEFTV, LQUERY, OVER, PAIR,
- $ RIGHTV, SOMEV
- INTEGER I, IERR, II, IP, IS, J, J1, J2, JNXT, K, KI,
- $ IV, MAXWRK, NB, KI2
- REAL BETA, BIGNUM, EMAX, OVFL, REC, REMAX, SCALE,
- $ SMIN, SMLNUM, ULP, UNFL, VCRIT, VMAX, WI, WR,
- $ XNORM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ISAMAX, ILAENV
- REAL SDOT, SLAMCH
- EXTERNAL LSAME, ISAMAX, ILAENV, SDOT, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SCOPY, SGEMV, SLALN2, SSCAL, XERBLA,
- $ SLACPY, SGEMM, SLABAD, SLASET
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SQRT
- * ..
- * .. Local Arrays ..
- REAL X( 2, 2 )
- INTEGER ISCOMPLEX( NBMAX )
- * ..
- * .. Executable Statements ..
- *
- * Decode and test the input parameters
- *
- BOTHV = LSAME( SIDE, 'B' )
- RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
- LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
- *
- ALLV = LSAME( HOWMNY, 'A' )
- OVER = LSAME( HOWMNY, 'B' )
- SOMEV = LSAME( HOWMNY, 'S' )
- *
- INFO = 0
- NB = ILAENV( 1, 'STREVC', SIDE // HOWMNY, N, -1, -1, -1 )
- MAXWRK = N + 2*N*NB
- WORK(1) = MAXWRK
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
- INFO = -1
- ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
- INFO = -8
- ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
- INFO = -10
- ELSE IF( LWORK.LT.MAX( 1, 3*N ) .AND. .NOT.LQUERY ) THEN
- INFO = -14
- ELSE
- *
- * Set M to the number of columns required to store the selected
- * eigenvectors, standardize the array SELECT if necessary, and
- * test MM.
- *
- IF( SOMEV ) THEN
- M = 0
- PAIR = .FALSE.
- DO 10 J = 1, N
- IF( PAIR ) THEN
- PAIR = .FALSE.
- SELECT( J ) = .FALSE.
- ELSE
- IF( J.LT.N ) THEN
- IF( T( J+1, J ).EQ.ZERO ) THEN
- IF( SELECT( J ) )
- $ M = M + 1
- ELSE
- PAIR = .TRUE.
- IF( SELECT( J ) .OR. SELECT( J+1 ) ) THEN
- SELECT( J ) = .TRUE.
- M = M + 2
- END IF
- END IF
- ELSE
- IF( SELECT( N ) )
- $ M = M + 1
- END IF
- END IF
- 10 CONTINUE
- ELSE
- M = N
- END IF
- *
- IF( MM.LT.M ) THEN
- INFO = -11
- END IF
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'STREVC3', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Use blocked version of back-transformation if sufficient workspace.
- * Zero-out the workspace to avoid potential NaN propagation.
- *
- IF( OVER .AND. LWORK .GE. N + 2*N*NBMIN ) THEN
- NB = (LWORK - N) / (2*N)
- NB = MIN( NB, NBMAX )
- CALL SLASET( 'F', N, 1+2*NB, ZERO, ZERO, WORK, N )
- ELSE
- NB = 1
- END IF
- *
- * Set the constants to control overflow.
- *
- UNFL = SLAMCH( 'Safe minimum' )
- OVFL = ONE / UNFL
- CALL SLABAD( UNFL, OVFL )
- ULP = SLAMCH( 'Precision' )
- SMLNUM = UNFL*( N / ULP )
- BIGNUM = ( ONE-ULP ) / SMLNUM
- *
- * Compute 1-norm of each column of strictly upper triangular
- * part of T to control overflow in triangular solver.
- *
- WORK( 1 ) = ZERO
- DO 30 J = 2, N
- WORK( J ) = ZERO
- DO 20 I = 1, J - 1
- WORK( J ) = WORK( J ) + ABS( T( I, J ) )
- 20 CONTINUE
- 30 CONTINUE
- *
- * Index IP is used to specify the real or complex eigenvalue:
- * IP = 0, real eigenvalue,
- * 1, first of conjugate complex pair: (wr,wi)
- * -1, second of conjugate complex pair: (wr,wi)
- * ISCOMPLEX array stores IP for each column in current block.
- *
- IF( RIGHTV ) THEN
- *
- * ============================================================
- * Compute right eigenvectors.
- *
- * IV is index of column in current block.
- * For complex right vector, uses IV-1 for real part and IV for complex part.
- * Non-blocked version always uses IV=2;
- * blocked version starts with IV=NB, goes down to 1 or 2.
- * (Note the "0-th" column is used for 1-norms computed above.)
- IV = 2
- IF( NB.GT.2 ) THEN
- IV = NB
- END IF
-
- IP = 0
- IS = M
- DO 140 KI = N, 1, -1
- IF( IP.EQ.-1 ) THEN
- * previous iteration (ki+1) was second of conjugate pair,
- * so this ki is first of conjugate pair; skip to end of loop
- IP = 1
- GO TO 140
- ELSE IF( KI.EQ.1 ) THEN
- * last column, so this ki must be real eigenvalue
- IP = 0
- ELSE IF( T( KI, KI-1 ).EQ.ZERO ) THEN
- * zero on sub-diagonal, so this ki is real eigenvalue
- IP = 0
- ELSE
- * non-zero on sub-diagonal, so this ki is second of conjugate pair
- IP = -1
- END IF
-
- IF( SOMEV ) THEN
- IF( IP.EQ.0 ) THEN
- IF( .NOT.SELECT( KI ) )
- $ GO TO 140
- ELSE
- IF( .NOT.SELECT( KI-1 ) )
- $ GO TO 140
- END IF
- END IF
- *
- * Compute the KI-th eigenvalue (WR,WI).
- *
- WR = T( KI, KI )
- WI = ZERO
- IF( IP.NE.0 )
- $ WI = SQRT( ABS( T( KI, KI-1 ) ) )*
- $ SQRT( ABS( T( KI-1, KI ) ) )
- SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
- *
- IF( IP.EQ.0 ) THEN
- *
- * --------------------------------------------------------
- * Real right eigenvector
- *
- WORK( KI + IV*N ) = ONE
- *
- * Form right-hand side.
- *
- DO 50 K = 1, KI - 1
- WORK( K + IV*N ) = -T( K, KI )
- 50 CONTINUE
- *
- * Solve upper quasi-triangular system:
- * [ T(1:KI-1,1:KI-1) - WR ]*X = SCALE*WORK.
- *
- JNXT = KI - 1
- DO 60 J = KI - 1, 1, -1
- IF( J.GT.JNXT )
- $ GO TO 60
- J1 = J
- J2 = J
- JNXT = J - 1
- IF( J.GT.1 ) THEN
- IF( T( J, J-1 ).NE.ZERO ) THEN
- J1 = J - 1
- JNXT = J - 2
- END IF
- END IF
- *
- IF( J1.EQ.J2 ) THEN
- *
- * 1-by-1 diagonal block
- *
- CALL SLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
- $ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
- $ ZERO, X, 2, SCALE, XNORM, IERR )
- *
- * Scale X(1,1) to avoid overflow when updating
- * the right-hand side.
- *
- IF( XNORM.GT.ONE ) THEN
- IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
- X( 1, 1 ) = X( 1, 1 ) / XNORM
- SCALE = SCALE / XNORM
- END IF
- END IF
- *
- * Scale if necessary
- *
- IF( SCALE.NE.ONE )
- $ CALL SSCAL( KI, SCALE, WORK( 1+IV*N ), 1 )
- WORK( J+IV*N ) = X( 1, 1 )
- *
- * Update right-hand side
- *
- CALL SAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
- $ WORK( 1+IV*N ), 1 )
- *
- ELSE
- *
- * 2-by-2 diagonal block
- *
- CALL SLALN2( .FALSE., 2, 1, SMIN, ONE,
- $ T( J-1, J-1 ), LDT, ONE, ONE,
- $ WORK( J-1+IV*N ), N, WR, ZERO, X, 2,
- $ SCALE, XNORM, IERR )
- *
- * Scale X(1,1) and X(2,1) to avoid overflow when
- * updating the right-hand side.
- *
- IF( XNORM.GT.ONE ) THEN
- BETA = MAX( WORK( J-1 ), WORK( J ) )
- IF( BETA.GT.BIGNUM / XNORM ) THEN
- X( 1, 1 ) = X( 1, 1 ) / XNORM
- X( 2, 1 ) = X( 2, 1 ) / XNORM
- SCALE = SCALE / XNORM
- END IF
- END IF
- *
- * Scale if necessary
- *
- IF( SCALE.NE.ONE )
- $ CALL SSCAL( KI, SCALE, WORK( 1+IV*N ), 1 )
- WORK( J-1+IV*N ) = X( 1, 1 )
- WORK( J +IV*N ) = X( 2, 1 )
- *
- * Update right-hand side
- *
- CALL SAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
- $ WORK( 1+IV*N ), 1 )
- CALL SAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
- $ WORK( 1+IV*N ), 1 )
- END IF
- 60 CONTINUE
- *
- * Copy the vector x or Q*x to VR and normalize.
- *
- IF( .NOT.OVER ) THEN
- * ------------------------------
- * no back-transform: copy x to VR and normalize.
- CALL SCOPY( KI, WORK( 1 + IV*N ), 1, VR( 1, IS ), 1 )
- *
- II = ISAMAX( KI, VR( 1, IS ), 1 )
- REMAX = ONE / ABS( VR( II, IS ) )
- CALL SSCAL( KI, REMAX, VR( 1, IS ), 1 )
- *
- DO 70 K = KI + 1, N
- VR( K, IS ) = ZERO
- 70 CONTINUE
- *
- ELSE IF( NB.EQ.1 ) THEN
- * ------------------------------
- * version 1: back-transform each vector with GEMV, Q*x.
- IF( KI.GT.1 )
- $ CALL SGEMV( 'N', N, KI-1, ONE, VR, LDVR,
- $ WORK( 1 + IV*N ), 1, WORK( KI + IV*N ),
- $ VR( 1, KI ), 1 )
- *
- II = ISAMAX( N, VR( 1, KI ), 1 )
- REMAX = ONE / ABS( VR( II, KI ) )
- CALL SSCAL( N, REMAX, VR( 1, KI ), 1 )
- *
- ELSE
- * ------------------------------
- * version 2: back-transform block of vectors with GEMM
- * zero out below vector
- DO K = KI + 1, N
- WORK( K + IV*N ) = ZERO
- END DO
- ISCOMPLEX( IV ) = IP
- * back-transform and normalization is done below
- END IF
- ELSE
- *
- * --------------------------------------------------------
- * Complex right eigenvector.
- *
- * Initial solve
- * [ ( T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I*WI) ]*X = 0.
- * [ ( T(KI, KI-1) T(KI, KI) ) ]
- *
- IF( ABS( T( KI-1, KI ) ).GE.ABS( T( KI, KI-1 ) ) ) THEN
- WORK( KI-1 + (IV-1)*N ) = ONE
- WORK( KI + (IV )*N ) = WI / T( KI-1, KI )
- ELSE
- WORK( KI-1 + (IV-1)*N ) = -WI / T( KI, KI-1 )
- WORK( KI + (IV )*N ) = ONE
- END IF
- WORK( KI + (IV-1)*N ) = ZERO
- WORK( KI-1 + (IV )*N ) = ZERO
- *
- * Form right-hand side.
- *
- DO 80 K = 1, KI - 2
- WORK( K+(IV-1)*N ) = -WORK( KI-1+(IV-1)*N )*T(K,KI-1)
- WORK( K+(IV )*N ) = -WORK( KI +(IV )*N )*T(K,KI )
- 80 CONTINUE
- *
- * Solve upper quasi-triangular system:
- * [ T(1:KI-2,1:KI-2) - (WR+i*WI) ]*X = SCALE*(WORK+i*WORK2)
- *
- JNXT = KI - 2
- DO 90 J = KI - 2, 1, -1
- IF( J.GT.JNXT )
- $ GO TO 90
- J1 = J
- J2 = J
- JNXT = J - 1
- IF( J.GT.1 ) THEN
- IF( T( J, J-1 ).NE.ZERO ) THEN
- J1 = J - 1
- JNXT = J - 2
- END IF
- END IF
- *
- IF( J1.EQ.J2 ) THEN
- *
- * 1-by-1 diagonal block
- *
- CALL SLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
- $ LDT, ONE, ONE, WORK( J+(IV-1)*N ), N,
- $ WR, WI, X, 2, SCALE, XNORM, IERR )
- *
- * Scale X(1,1) and X(1,2) to avoid overflow when
- * updating the right-hand side.
- *
- IF( XNORM.GT.ONE ) THEN
- IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
- X( 1, 1 ) = X( 1, 1 ) / XNORM
- X( 1, 2 ) = X( 1, 2 ) / XNORM
- SCALE = SCALE / XNORM
- END IF
- END IF
- *
- * Scale if necessary
- *
- IF( SCALE.NE.ONE ) THEN
- CALL SSCAL( KI, SCALE, WORK( 1+(IV-1)*N ), 1 )
- CALL SSCAL( KI, SCALE, WORK( 1+(IV )*N ), 1 )
- END IF
- WORK( J+(IV-1)*N ) = X( 1, 1 )
- WORK( J+(IV )*N ) = X( 1, 2 )
- *
- * Update the right-hand side
- *
- CALL SAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
- $ WORK( 1+(IV-1)*N ), 1 )
- CALL SAXPY( J-1, -X( 1, 2 ), T( 1, J ), 1,
- $ WORK( 1+(IV )*N ), 1 )
- *
- ELSE
- *
- * 2-by-2 diagonal block
- *
- CALL SLALN2( .FALSE., 2, 2, SMIN, ONE,
- $ T( J-1, J-1 ), LDT, ONE, ONE,
- $ WORK( J-1+(IV-1)*N ), N, WR, WI, X, 2,
- $ SCALE, XNORM, IERR )
- *
- * Scale X to avoid overflow when updating
- * the right-hand side.
- *
- IF( XNORM.GT.ONE ) THEN
- BETA = MAX( WORK( J-1 ), WORK( J ) )
- IF( BETA.GT.BIGNUM / XNORM ) THEN
- REC = ONE / XNORM
- X( 1, 1 ) = X( 1, 1 )*REC
- X( 1, 2 ) = X( 1, 2 )*REC
- X( 2, 1 ) = X( 2, 1 )*REC
- X( 2, 2 ) = X( 2, 2 )*REC
- SCALE = SCALE*REC
- END IF
- END IF
- *
- * Scale if necessary
- *
- IF( SCALE.NE.ONE ) THEN
- CALL SSCAL( KI, SCALE, WORK( 1+(IV-1)*N ), 1 )
- CALL SSCAL( KI, SCALE, WORK( 1+(IV )*N ), 1 )
- END IF
- WORK( J-1+(IV-1)*N ) = X( 1, 1 )
- WORK( J +(IV-1)*N ) = X( 2, 1 )
- WORK( J-1+(IV )*N ) = X( 1, 2 )
- WORK( J +(IV )*N ) = X( 2, 2 )
- *
- * Update the right-hand side
- *
- CALL SAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
- $ WORK( 1+(IV-1)*N ), 1 )
- CALL SAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
- $ WORK( 1+(IV-1)*N ), 1 )
- CALL SAXPY( J-2, -X( 1, 2 ), T( 1, J-1 ), 1,
- $ WORK( 1+(IV )*N ), 1 )
- CALL SAXPY( J-2, -X( 2, 2 ), T( 1, J ), 1,
- $ WORK( 1+(IV )*N ), 1 )
- END IF
- 90 CONTINUE
- *
- * Copy the vector x or Q*x to VR and normalize.
- *
- IF( .NOT.OVER ) THEN
- * ------------------------------
- * no back-transform: copy x to VR and normalize.
- CALL SCOPY( KI, WORK( 1+(IV-1)*N ), 1, VR(1,IS-1), 1 )
- CALL SCOPY( KI, WORK( 1+(IV )*N ), 1, VR(1,IS ), 1 )
- *
- EMAX = ZERO
- DO 100 K = 1, KI
- EMAX = MAX( EMAX, ABS( VR( K, IS-1 ) )+
- $ ABS( VR( K, IS ) ) )
- 100 CONTINUE
- REMAX = ONE / EMAX
- CALL SSCAL( KI, REMAX, VR( 1, IS-1 ), 1 )
- CALL SSCAL( KI, REMAX, VR( 1, IS ), 1 )
- *
- DO 110 K = KI + 1, N
- VR( K, IS-1 ) = ZERO
- VR( K, IS ) = ZERO
- 110 CONTINUE
- *
- ELSE IF( NB.EQ.1 ) THEN
- * ------------------------------
- * version 1: back-transform each vector with GEMV, Q*x.
- IF( KI.GT.2 ) THEN
- CALL SGEMV( 'N', N, KI-2, ONE, VR, LDVR,
- $ WORK( 1 + (IV-1)*N ), 1,
- $ WORK( KI-1 + (IV-1)*N ), VR(1,KI-1), 1)
- CALL SGEMV( 'N', N, KI-2, ONE, VR, LDVR,
- $ WORK( 1 + (IV)*N ), 1,
- $ WORK( KI + (IV)*N ), VR( 1, KI ), 1 )
- ELSE
- CALL SSCAL( N, WORK(KI-1+(IV-1)*N), VR(1,KI-1), 1)
- CALL SSCAL( N, WORK(KI +(IV )*N), VR(1,KI ), 1)
- END IF
- *
- EMAX = ZERO
- DO 120 K = 1, N
- EMAX = MAX( EMAX, ABS( VR( K, KI-1 ) )+
- $ ABS( VR( K, KI ) ) )
- 120 CONTINUE
- REMAX = ONE / EMAX
- CALL SSCAL( N, REMAX, VR( 1, KI-1 ), 1 )
- CALL SSCAL( N, REMAX, VR( 1, KI ), 1 )
- *
- ELSE
- * ------------------------------
- * version 2: back-transform block of vectors with GEMM
- * zero out below vector
- DO K = KI + 1, N
- WORK( K + (IV-1)*N ) = ZERO
- WORK( K + (IV )*N ) = ZERO
- END DO
- ISCOMPLEX( IV-1 ) = -IP
- ISCOMPLEX( IV ) = IP
- IV = IV - 1
- * back-transform and normalization is done below
- END IF
- END IF
-
- IF( NB.GT.1 ) THEN
- * --------------------------------------------------------
- * Blocked version of back-transform
- * For complex case, KI2 includes both vectors (KI-1 and KI)
- IF( IP.EQ.0 ) THEN
- KI2 = KI
- ELSE
- KI2 = KI - 1
- END IF
-
- * Columns IV:NB of work are valid vectors.
- * When the number of vectors stored reaches NB-1 or NB,
- * or if this was last vector, do the GEMM
- IF( (IV.LE.2) .OR. (KI2.EQ.1) ) THEN
- CALL SGEMM( 'N', 'N', N, NB-IV+1, KI2+NB-IV, ONE,
- $ VR, LDVR,
- $ WORK( 1 + (IV)*N ), N,
- $ ZERO,
- $ WORK( 1 + (NB+IV)*N ), N )
- * normalize vectors
- DO K = IV, NB
- IF( ISCOMPLEX(K).EQ.0 ) THEN
- * real eigenvector
- II = ISAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
- REMAX = ONE / ABS( WORK( II + (NB+K)*N ) )
- ELSE IF( ISCOMPLEX(K).EQ.1 ) THEN
- * first eigenvector of conjugate pair
- EMAX = ZERO
- DO II = 1, N
- EMAX = MAX( EMAX,
- $ ABS( WORK( II + (NB+K )*N ) )+
- $ ABS( WORK( II + (NB+K+1)*N ) ) )
- END DO
- REMAX = ONE / EMAX
- * else if ISCOMPLEX(K).EQ.-1
- * second eigenvector of conjugate pair
- * reuse same REMAX as previous K
- END IF
- CALL SSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
- END DO
- CALL SLACPY( 'F', N, NB-IV+1,
- $ WORK( 1 + (NB+IV)*N ), N,
- $ VR( 1, KI2 ), LDVR )
- IV = NB
- ELSE
- IV = IV - 1
- END IF
- END IF ! blocked back-transform
- *
- IS = IS - 1
- IF( IP.NE.0 )
- $ IS = IS - 1
- 140 CONTINUE
- END IF
-
- IF( LEFTV ) THEN
- *
- * ============================================================
- * Compute left eigenvectors.
- *
- * IV is index of column in current block.
- * For complex left vector, uses IV for real part and IV+1 for complex part.
- * Non-blocked version always uses IV=1;
- * blocked version starts with IV=1, goes up to NB-1 or NB.
- * (Note the "0-th" column is used for 1-norms computed above.)
- IV = 1
- IP = 0
- IS = 1
- DO 260 KI = 1, N
- IF( IP.EQ.1 ) THEN
- * previous iteration (ki-1) was first of conjugate pair,
- * so this ki is second of conjugate pair; skip to end of loop
- IP = -1
- GO TO 260
- ELSE IF( KI.EQ.N ) THEN
- * last column, so this ki must be real eigenvalue
- IP = 0
- ELSE IF( T( KI+1, KI ).EQ.ZERO ) THEN
- * zero on sub-diagonal, so this ki is real eigenvalue
- IP = 0
- ELSE
- * non-zero on sub-diagonal, so this ki is first of conjugate pair
- IP = 1
- END IF
- *
- IF( SOMEV ) THEN
- IF( .NOT.SELECT( KI ) )
- $ GO TO 260
- END IF
- *
- * Compute the KI-th eigenvalue (WR,WI).
- *
- WR = T( KI, KI )
- WI = ZERO
- IF( IP.NE.0 )
- $ WI = SQRT( ABS( T( KI, KI+1 ) ) )*
- $ SQRT( ABS( T( KI+1, KI ) ) )
- SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
- *
- IF( IP.EQ.0 ) THEN
- *
- * --------------------------------------------------------
- * Real left eigenvector
- *
- WORK( KI + IV*N ) = ONE
- *
- * Form right-hand side.
- *
- DO 160 K = KI + 1, N
- WORK( K + IV*N ) = -T( KI, K )
- 160 CONTINUE
- *
- * Solve transposed quasi-triangular system:
- * [ T(KI+1:N,KI+1:N) - WR ]**T * X = SCALE*WORK
- *
- VMAX = ONE
- VCRIT = BIGNUM
- *
- JNXT = KI + 1
- DO 170 J = KI + 1, N
- IF( J.LT.JNXT )
- $ GO TO 170
- J1 = J
- J2 = J
- JNXT = J + 1
- IF( J.LT.N ) THEN
- IF( T( J+1, J ).NE.ZERO ) THEN
- J2 = J + 1
- JNXT = J + 2
- END IF
- END IF
- *
- IF( J1.EQ.J2 ) THEN
- *
- * 1-by-1 diagonal block
- *
- * Scale if necessary to avoid overflow when forming
- * the right-hand side.
- *
- IF( WORK( J ).GT.VCRIT ) THEN
- REC = ONE / VMAX
- CALL SSCAL( N-KI+1, REC, WORK( KI+IV*N ), 1 )
- VMAX = ONE
- VCRIT = BIGNUM
- END IF
- *
- WORK( J+IV*N ) = WORK( J+IV*N ) -
- $ SDOT( J-KI-1, T( KI+1, J ), 1,
- $ WORK( KI+1+IV*N ), 1 )
- *
- * Solve [ T(J,J) - WR ]**T * X = WORK
- *
- CALL SLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
- $ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
- $ ZERO, X, 2, SCALE, XNORM, IERR )
- *
- * Scale if necessary
- *
- IF( SCALE.NE.ONE )
- $ CALL SSCAL( N-KI+1, SCALE, WORK( KI+IV*N ), 1 )
- WORK( J+IV*N ) = X( 1, 1 )
- VMAX = MAX( ABS( WORK( J+IV*N ) ), VMAX )
- VCRIT = BIGNUM / VMAX
- *
- ELSE
- *
- * 2-by-2 diagonal block
- *
- * Scale if necessary to avoid overflow when forming
- * the right-hand side.
- *
- BETA = MAX( WORK( J ), WORK( J+1 ) )
- IF( BETA.GT.VCRIT ) THEN
- REC = ONE / VMAX
- CALL SSCAL( N-KI+1, REC, WORK( KI+IV*N ), 1 )
- VMAX = ONE
- VCRIT = BIGNUM
- END IF
- *
- WORK( J+IV*N ) = WORK( J+IV*N ) -
- $ SDOT( J-KI-1, T( KI+1, J ), 1,
- $ WORK( KI+1+IV*N ), 1 )
- *
- WORK( J+1+IV*N ) = WORK( J+1+IV*N ) -
- $ SDOT( J-KI-1, T( KI+1, J+1 ), 1,
- $ WORK( KI+1+IV*N ), 1 )
- *
- * Solve
- * [ T(J,J)-WR T(J,J+1) ]**T * X = SCALE*( WORK1 )
- * [ T(J+1,J) T(J+1,J+1)-WR ] ( WORK2 )
- *
- CALL SLALN2( .TRUE., 2, 1, SMIN, ONE, T( J, J ),
- $ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
- $ ZERO, X, 2, SCALE, XNORM, IERR )
- *
- * Scale if necessary
- *
- IF( SCALE.NE.ONE )
- $ CALL SSCAL( N-KI+1, SCALE, WORK( KI+IV*N ), 1 )
- WORK( J +IV*N ) = X( 1, 1 )
- WORK( J+1+IV*N ) = X( 2, 1 )
- *
- VMAX = MAX( ABS( WORK( J +IV*N ) ),
- $ ABS( WORK( J+1+IV*N ) ), VMAX )
- VCRIT = BIGNUM / VMAX
- *
- END IF
- 170 CONTINUE
- *
- * Copy the vector x or Q*x to VL and normalize.
- *
- IF( .NOT.OVER ) THEN
- * ------------------------------
- * no back-transform: copy x to VL and normalize.
- CALL SCOPY( N-KI+1, WORK( KI + IV*N ), 1,
- $ VL( KI, IS ), 1 )
- *
- II = ISAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
- REMAX = ONE / ABS( VL( II, IS ) )
- CALL SSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
- *
- DO 180 K = 1, KI - 1
- VL( K, IS ) = ZERO
- 180 CONTINUE
- *
- ELSE IF( NB.EQ.1 ) THEN
- * ------------------------------
- * version 1: back-transform each vector with GEMV, Q*x.
- IF( KI.LT.N )
- $ CALL SGEMV( 'N', N, N-KI, ONE,
- $ VL( 1, KI+1 ), LDVL,
- $ WORK( KI+1 + IV*N ), 1,
- $ WORK( KI + IV*N ), VL( 1, KI ), 1 )
- *
- II = ISAMAX( N, VL( 1, KI ), 1 )
- REMAX = ONE / ABS( VL( II, KI ) )
- CALL SSCAL( N, REMAX, VL( 1, KI ), 1 )
- *
- ELSE
- * ------------------------------
- * version 2: back-transform block of vectors with GEMM
- * zero out above vector
- * could go from KI-NV+1 to KI-1
- DO K = 1, KI - 1
- WORK( K + IV*N ) = ZERO
- END DO
- ISCOMPLEX( IV ) = IP
- * back-transform and normalization is done below
- END IF
- ELSE
- *
- * --------------------------------------------------------
- * Complex left eigenvector.
- *
- * Initial solve:
- * [ ( T(KI,KI) T(KI,KI+1) )**T - (WR - I* WI) ]*X = 0.
- * [ ( T(KI+1,KI) T(KI+1,KI+1) ) ]
- *
- IF( ABS( T( KI, KI+1 ) ).GE.ABS( T( KI+1, KI ) ) ) THEN
- WORK( KI + (IV )*N ) = WI / T( KI, KI+1 )
- WORK( KI+1 + (IV+1)*N ) = ONE
- ELSE
- WORK( KI + (IV )*N ) = ONE
- WORK( KI+1 + (IV+1)*N ) = -WI / T( KI+1, KI )
- END IF
- WORK( KI+1 + (IV )*N ) = ZERO
- WORK( KI + (IV+1)*N ) = ZERO
- *
- * Form right-hand side.
- *
- DO 190 K = KI + 2, N
- WORK( K+(IV )*N ) = -WORK( KI +(IV )*N )*T(KI, K)
- WORK( K+(IV+1)*N ) = -WORK( KI+1+(IV+1)*N )*T(KI+1,K)
- 190 CONTINUE
- *
- * Solve transposed quasi-triangular system:
- * [ T(KI+2:N,KI+2:N)**T - (WR-i*WI) ]*X = WORK1+i*WORK2
- *
- VMAX = ONE
- VCRIT = BIGNUM
- *
- JNXT = KI + 2
- DO 200 J = KI + 2, N
- IF( J.LT.JNXT )
- $ GO TO 200
- J1 = J
- J2 = J
- JNXT = J + 1
- IF( J.LT.N ) THEN
- IF( T( J+1, J ).NE.ZERO ) THEN
- J2 = J + 1
- JNXT = J + 2
- END IF
- END IF
- *
- IF( J1.EQ.J2 ) THEN
- *
- * 1-by-1 diagonal block
- *
- * Scale if necessary to avoid overflow when
- * forming the right-hand side elements.
- *
- IF( WORK( J ).GT.VCRIT ) THEN
- REC = ONE / VMAX
- CALL SSCAL( N-KI+1, REC, WORK(KI+(IV )*N), 1 )
- CALL SSCAL( N-KI+1, REC, WORK(KI+(IV+1)*N), 1 )
- VMAX = ONE
- VCRIT = BIGNUM
- END IF
- *
- WORK( J+(IV )*N ) = WORK( J+(IV)*N ) -
- $ SDOT( J-KI-2, T( KI+2, J ), 1,
- $ WORK( KI+2+(IV)*N ), 1 )
- WORK( J+(IV+1)*N ) = WORK( J+(IV+1)*N ) -
- $ SDOT( J-KI-2, T( KI+2, J ), 1,
- $ WORK( KI+2+(IV+1)*N ), 1 )
- *
- * Solve [ T(J,J)-(WR-i*WI) ]*(X11+i*X12)= WK+I*WK2
- *
- CALL SLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
- $ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
- $ -WI, X, 2, SCALE, XNORM, IERR )
- *
- * Scale if necessary
- *
- IF( SCALE.NE.ONE ) THEN
- CALL SSCAL( N-KI+1, SCALE, WORK(KI+(IV )*N), 1)
- CALL SSCAL( N-KI+1, SCALE, WORK(KI+(IV+1)*N), 1)
- END IF
- WORK( J+(IV )*N ) = X( 1, 1 )
- WORK( J+(IV+1)*N ) = X( 1, 2 )
- VMAX = MAX( ABS( WORK( J+(IV )*N ) ),
- $ ABS( WORK( J+(IV+1)*N ) ), VMAX )
- VCRIT = BIGNUM / VMAX
- *
- ELSE
- *
- * 2-by-2 diagonal block
- *
- * Scale if necessary to avoid overflow when forming
- * the right-hand side elements.
- *
- BETA = MAX( WORK( J ), WORK( J+1 ) )
- IF( BETA.GT.VCRIT ) THEN
- REC = ONE / VMAX
- CALL SSCAL( N-KI+1, REC, WORK(KI+(IV )*N), 1 )
- CALL SSCAL( N-KI+1, REC, WORK(KI+(IV+1)*N), 1 )
- VMAX = ONE
- VCRIT = BIGNUM
- END IF
- *
- WORK( J +(IV )*N ) = WORK( J+(IV)*N ) -
- $ SDOT( J-KI-2, T( KI+2, J ), 1,
- $ WORK( KI+2+(IV)*N ), 1 )
- *
- WORK( J +(IV+1)*N ) = WORK( J+(IV+1)*N ) -
- $ SDOT( J-KI-2, T( KI+2, J ), 1,
- $ WORK( KI+2+(IV+1)*N ), 1 )
- *
- WORK( J+1+(IV )*N ) = WORK( J+1+(IV)*N ) -
- $ SDOT( J-KI-2, T( KI+2, J+1 ), 1,
- $ WORK( KI+2+(IV)*N ), 1 )
- *
- WORK( J+1+(IV+1)*N ) = WORK( J+1+(IV+1)*N ) -
- $ SDOT( J-KI-2, T( KI+2, J+1 ), 1,
- $ WORK( KI+2+(IV+1)*N ), 1 )
- *
- * Solve 2-by-2 complex linear equation
- * [ (T(j,j) T(j,j+1) )**T - (wr-i*wi)*I ]*X = SCALE*B
- * [ (T(j+1,j) T(j+1,j+1)) ]
- *
- CALL SLALN2( .TRUE., 2, 2, SMIN, ONE, T( J, J ),
- $ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
- $ -WI, X, 2, SCALE, XNORM, IERR )
- *
- * Scale if necessary
- *
- IF( SCALE.NE.ONE ) THEN
- CALL SSCAL( N-KI+1, SCALE, WORK(KI+(IV )*N), 1)
- CALL SSCAL( N-KI+1, SCALE, WORK(KI+(IV+1)*N), 1)
- END IF
- WORK( J +(IV )*N ) = X( 1, 1 )
- WORK( J +(IV+1)*N ) = X( 1, 2 )
- WORK( J+1+(IV )*N ) = X( 2, 1 )
- WORK( J+1+(IV+1)*N ) = X( 2, 2 )
- VMAX = MAX( ABS( X( 1, 1 ) ), ABS( X( 1, 2 ) ),
- $ ABS( X( 2, 1 ) ), ABS( X( 2, 2 ) ),
- $ VMAX )
- VCRIT = BIGNUM / VMAX
- *
- END IF
- 200 CONTINUE
- *
- * Copy the vector x or Q*x to VL and normalize.
- *
- IF( .NOT.OVER ) THEN
- * ------------------------------
- * no back-transform: copy x to VL and normalize.
- CALL SCOPY( N-KI+1, WORK( KI + (IV )*N ), 1,
- $ VL( KI, IS ), 1 )
- CALL SCOPY( N-KI+1, WORK( KI + (IV+1)*N ), 1,
- $ VL( KI, IS+1 ), 1 )
- *
- EMAX = ZERO
- DO 220 K = KI, N
- EMAX = MAX( EMAX, ABS( VL( K, IS ) )+
- $ ABS( VL( K, IS+1 ) ) )
- 220 CONTINUE
- REMAX = ONE / EMAX
- CALL SSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
- CALL SSCAL( N-KI+1, REMAX, VL( KI, IS+1 ), 1 )
- *
- DO 230 K = 1, KI - 1
- VL( K, IS ) = ZERO
- VL( K, IS+1 ) = ZERO
- 230 CONTINUE
- *
- ELSE IF( NB.EQ.1 ) THEN
- * ------------------------------
- * version 1: back-transform each vector with GEMV, Q*x.
- IF( KI.LT.N-1 ) THEN
- CALL SGEMV( 'N', N, N-KI-1, ONE,
- $ VL( 1, KI+2 ), LDVL,
- $ WORK( KI+2 + (IV)*N ), 1,
- $ WORK( KI + (IV)*N ),
- $ VL( 1, KI ), 1 )
- CALL SGEMV( 'N', N, N-KI-1, ONE,
- $ VL( 1, KI+2 ), LDVL,
- $ WORK( KI+2 + (IV+1)*N ), 1,
- $ WORK( KI+1 + (IV+1)*N ),
- $ VL( 1, KI+1 ), 1 )
- ELSE
- CALL SSCAL( N, WORK(KI+ (IV )*N), VL(1, KI ), 1)
- CALL SSCAL( N, WORK(KI+1+(IV+1)*N), VL(1, KI+1), 1)
- END IF
- *
- EMAX = ZERO
- DO 240 K = 1, N
- EMAX = MAX( EMAX, ABS( VL( K, KI ) )+
- $ ABS( VL( K, KI+1 ) ) )
- 240 CONTINUE
- REMAX = ONE / EMAX
- CALL SSCAL( N, REMAX, VL( 1, KI ), 1 )
- CALL SSCAL( N, REMAX, VL( 1, KI+1 ), 1 )
- *
- ELSE
- * ------------------------------
- * version 2: back-transform block of vectors with GEMM
- * zero out above vector
- * could go from KI-NV+1 to KI-1
- DO K = 1, KI - 1
- WORK( K + (IV )*N ) = ZERO
- WORK( K + (IV+1)*N ) = ZERO
- END DO
- ISCOMPLEX( IV ) = IP
- ISCOMPLEX( IV+1 ) = -IP
- IV = IV + 1
- * back-transform and normalization is done below
- END IF
- END IF
-
- IF( NB.GT.1 ) THEN
- * --------------------------------------------------------
- * Blocked version of back-transform
- * For complex case, KI2 includes both vectors (KI and KI+1)
- IF( IP.EQ.0 ) THEN
- KI2 = KI
- ELSE
- KI2 = KI + 1
- END IF
-
- * Columns 1:IV of work are valid vectors.
- * When the number of vectors stored reaches NB-1 or NB,
- * or if this was last vector, do the GEMM
- IF( (IV.GE.NB-1) .OR. (KI2.EQ.N) ) THEN
- CALL SGEMM( 'N', 'N', N, IV, N-KI2+IV, ONE,
- $ VL( 1, KI2-IV+1 ), LDVL,
- $ WORK( KI2-IV+1 + (1)*N ), N,
- $ ZERO,
- $ WORK( 1 + (NB+1)*N ), N )
- * normalize vectors
- DO K = 1, IV
- IF( ISCOMPLEX(K).EQ.0) THEN
- * real eigenvector
- II = ISAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
- REMAX = ONE / ABS( WORK( II + (NB+K)*N ) )
- ELSE IF( ISCOMPLEX(K).EQ.1) THEN
- * first eigenvector of conjugate pair
- EMAX = ZERO
- DO II = 1, N
- EMAX = MAX( EMAX,
- $ ABS( WORK( II + (NB+K )*N ) )+
- $ ABS( WORK( II + (NB+K+1)*N ) ) )
- END DO
- REMAX = ONE / EMAX
- * else if ISCOMPLEX(K).EQ.-1
- * second eigenvector of conjugate pair
- * reuse same REMAX as previous K
- END IF
- CALL SSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
- END DO
- CALL SLACPY( 'F', N, IV,
- $ WORK( 1 + (NB+1)*N ), N,
- $ VL( 1, KI2-IV+1 ), LDVL )
- IV = 1
- ELSE
- IV = IV + 1
- END IF
- END IF ! blocked back-transform
- *
- IS = IS + 1
- IF( IP.NE.0 )
- $ IS = IS + 1
- 260 CONTINUE
- END IF
- *
- RETURN
- *
- * End of STREVC3
- *
- END
|