You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slanhs.f 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. *> \brief \b SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLANHS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slanhs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slanhs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slanhs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION SLANHS( NORM, N, A, LDA, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM
  25. * INTEGER LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL A( LDA, * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> SLANHS returns the value of the one norm, or the Frobenius norm, or
  38. *> the infinity norm, or the element of largest absolute value of a
  39. *> Hessenberg matrix A.
  40. *> \endverbatim
  41. *>
  42. *> \return SLANHS
  43. *> \verbatim
  44. *>
  45. *> SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  46. *> (
  47. *> ( norm1(A), NORM = '1', 'O' or 'o'
  48. *> (
  49. *> ( normI(A), NORM = 'I' or 'i'
  50. *> (
  51. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  52. *>
  53. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  54. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  55. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  56. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] NORM
  63. *> \verbatim
  64. *> NORM is CHARACTER*1
  65. *> Specifies the value to be returned in SLANHS as described
  66. *> above.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] N
  70. *> \verbatim
  71. *> N is INTEGER
  72. *> The order of the matrix A. N >= 0. When N = 0, SLANHS is
  73. *> set to zero.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] A
  77. *> \verbatim
  78. *> A is REAL array, dimension (LDA,N)
  79. *> The n by n upper Hessenberg matrix A; the part of A below the
  80. *> first sub-diagonal is not referenced.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(N,1).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] WORK
  90. *> \verbatim
  91. *> WORK is REAL array, dimension (MAX(1,LWORK)),
  92. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  93. *> referenced.
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \date December 2016
  105. *
  106. *> \ingroup realOTHERauxiliary
  107. *
  108. * =====================================================================
  109. REAL FUNCTION SLANHS( NORM, N, A, LDA, WORK )
  110. *
  111. * -- LAPACK auxiliary routine (version 3.7.0) --
  112. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  113. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  114. * December 2016
  115. *
  116. IMPLICIT NONE
  117. * .. Scalar Arguments ..
  118. CHARACTER NORM
  119. INTEGER LDA, N
  120. * ..
  121. * .. Array Arguments ..
  122. REAL A( LDA, * ), WORK( * )
  123. * ..
  124. *
  125. * =====================================================================
  126. *
  127. * .. Parameters ..
  128. REAL ONE, ZERO
  129. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  130. * ..
  131. * .. Local Scalars ..
  132. INTEGER I, J
  133. REAL SUM, VALUE
  134. * ..
  135. * .. Local Arrays ..
  136. REAL SSQ( 2 ), COLSSQ( 2 )
  137. * ..
  138. * .. External Functions ..
  139. LOGICAL LSAME, SISNAN
  140. EXTERNAL LSAME, SISNAN
  141. * ..
  142. * .. External Subroutines ..
  143. EXTERNAL SLASSQ, SCOMBSSQ
  144. * ..
  145. * .. Intrinsic Functions ..
  146. INTRINSIC ABS, MIN, SQRT
  147. * ..
  148. * .. Executable Statements ..
  149. *
  150. IF( N.EQ.0 ) THEN
  151. VALUE = ZERO
  152. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  153. *
  154. * Find max(abs(A(i,j))).
  155. *
  156. VALUE = ZERO
  157. DO 20 J = 1, N
  158. DO 10 I = 1, MIN( N, J+1 )
  159. SUM = ABS( A( I, J ) )
  160. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  161. 10 CONTINUE
  162. 20 CONTINUE
  163. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  164. *
  165. * Find norm1(A).
  166. *
  167. VALUE = ZERO
  168. DO 40 J = 1, N
  169. SUM = ZERO
  170. DO 30 I = 1, MIN( N, J+1 )
  171. SUM = SUM + ABS( A( I, J ) )
  172. 30 CONTINUE
  173. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  174. 40 CONTINUE
  175. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  176. *
  177. * Find normI(A).
  178. *
  179. DO 50 I = 1, N
  180. WORK( I ) = ZERO
  181. 50 CONTINUE
  182. DO 70 J = 1, N
  183. DO 60 I = 1, MIN( N, J+1 )
  184. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  185. 60 CONTINUE
  186. 70 CONTINUE
  187. VALUE = ZERO
  188. DO 80 I = 1, N
  189. SUM = WORK( I )
  190. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  191. 80 CONTINUE
  192. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  193. *
  194. * Find normF(A).
  195. * SSQ(1) is scale
  196. * SSQ(2) is sum-of-squares
  197. * For better accuracy, sum each column separately.
  198. *
  199. SSQ( 1 ) = ZERO
  200. SSQ( 2 ) = ONE
  201. DO 90 J = 1, N
  202. COLSSQ( 1 ) = ZERO
  203. COLSSQ( 2 ) = ONE
  204. CALL SLASSQ( MIN( N, J+1 ), A( 1, J ), 1,
  205. $ COLSSQ( 1 ), COLSSQ( 2 ) )
  206. CALL SCOMBSSQ( SSQ, COLSSQ )
  207. 90 CONTINUE
  208. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  209. END IF
  210. *
  211. SLANHS = VALUE
  212. RETURN
  213. *
  214. * End of SLANHS
  215. *
  216. END