You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dbbcsd.f 39 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. *> \brief \b DBBCSD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DBBCSD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbbcsd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbbcsd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbbcsd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
  22. * THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
  23. * V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
  24. * B22D, B22E, WORK, LWORK, INFO )
  25. *
  26. * .. Scalar Arguments ..
  27. * CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
  28. * INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
  29. * ..
  30. * .. Array Arguments ..
  31. * DOUBLE PRECISION B11D( * ), B11E( * ), B12D( * ), B12E( * ),
  32. * $ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
  33. * $ PHI( * ), THETA( * ), WORK( * )
  34. * DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
  35. * $ V2T( LDV2T, * )
  36. * ..
  37. *
  38. *
  39. *> \par Purpose:
  40. * =============
  41. *>
  42. *> \verbatim
  43. *>
  44. *> DBBCSD computes the CS decomposition of an orthogonal matrix in
  45. *> bidiagonal-block form,
  46. *>
  47. *>
  48. *> [ B11 | B12 0 0 ]
  49. *> [ 0 | 0 -I 0 ]
  50. *> X = [----------------]
  51. *> [ B21 | B22 0 0 ]
  52. *> [ 0 | 0 0 I ]
  53. *>
  54. *> [ C | -S 0 0 ]
  55. *> [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T
  56. *> = [---------] [---------------] [---------] .
  57. *> [ | U2 ] [ S | C 0 0 ] [ | V2 ]
  58. *> [ 0 | 0 0 I ]
  59. *>
  60. *> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
  61. *> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
  62. *> transposed and/or permuted. This can be done in constant time using
  63. *> the TRANS and SIGNS options. See DORCSD for details.)
  64. *>
  65. *> The bidiagonal matrices B11, B12, B21, and B22 are represented
  66. *> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
  67. *>
  68. *> The orthogonal matrices U1, U2, V1T, and V2T are input/output.
  69. *> The input matrices are pre- or post-multiplied by the appropriate
  70. *> singular vector matrices.
  71. *> \endverbatim
  72. *
  73. * Arguments:
  74. * ==========
  75. *
  76. *> \param[in] JOBU1
  77. *> \verbatim
  78. *> JOBU1 is CHARACTER
  79. *> = 'Y': U1 is updated;
  80. *> otherwise: U1 is not updated.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] JOBU2
  84. *> \verbatim
  85. *> JOBU2 is CHARACTER
  86. *> = 'Y': U2 is updated;
  87. *> otherwise: U2 is not updated.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] JOBV1T
  91. *> \verbatim
  92. *> JOBV1T is CHARACTER
  93. *> = 'Y': V1T is updated;
  94. *> otherwise: V1T is not updated.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] JOBV2T
  98. *> \verbatim
  99. *> JOBV2T is CHARACTER
  100. *> = 'Y': V2T is updated;
  101. *> otherwise: V2T is not updated.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] TRANS
  105. *> \verbatim
  106. *> TRANS is CHARACTER
  107. *> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
  108. *> order;
  109. *> otherwise: X, U1, U2, V1T, and V2T are stored in column-
  110. *> major order.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] M
  114. *> \verbatim
  115. *> M is INTEGER
  116. *> The number of rows and columns in X, the orthogonal matrix in
  117. *> bidiagonal-block form.
  118. *> \endverbatim
  119. *>
  120. *> \param[in] P
  121. *> \verbatim
  122. *> P is INTEGER
  123. *> The number of rows in the top-left block of X. 0 <= P <= M.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] Q
  127. *> \verbatim
  128. *> Q is INTEGER
  129. *> The number of columns in the top-left block of X.
  130. *> 0 <= Q <= MIN(P,M-P,M-Q).
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] THETA
  134. *> \verbatim
  135. *> THETA is DOUBLE PRECISION array, dimension (Q)
  136. *> On entry, the angles THETA(1),...,THETA(Q) that, along with
  137. *> PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
  138. *> form. On exit, the angles whose cosines and sines define the
  139. *> diagonal blocks in the CS decomposition.
  140. *> \endverbatim
  141. *>
  142. *> \param[in,out] PHI
  143. *> \verbatim
  144. *> PHI is DOUBLE PRECISION array, dimension (Q-1)
  145. *> The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
  146. *> THETA(Q), define the matrix in bidiagonal-block form.
  147. *> \endverbatim
  148. *>
  149. *> \param[in,out] U1
  150. *> \verbatim
  151. *> U1 is DOUBLE PRECISION array, dimension (LDU1,P)
  152. *> On entry, a P-by-P matrix. On exit, U1 is postmultiplied
  153. *> by the left singular vector matrix common to [ B11 ; 0 ] and
  154. *> [ B12 0 0 ; 0 -I 0 0 ].
  155. *> \endverbatim
  156. *>
  157. *> \param[in] LDU1
  158. *> \verbatim
  159. *> LDU1 is INTEGER
  160. *> The leading dimension of the array U1, LDU1 >= MAX(1,P).
  161. *> \endverbatim
  162. *>
  163. *> \param[in,out] U2
  164. *> \verbatim
  165. *> U2 is DOUBLE PRECISION array, dimension (LDU2,M-P)
  166. *> On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is
  167. *> postmultiplied by the left singular vector matrix common to
  168. *> [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
  169. *> \endverbatim
  170. *>
  171. *> \param[in] LDU2
  172. *> \verbatim
  173. *> LDU2 is INTEGER
  174. *> The leading dimension of the array U2, LDU2 >= MAX(1,M-P).
  175. *> \endverbatim
  176. *>
  177. *> \param[in,out] V1T
  178. *> \verbatim
  179. *> V1T is DOUBLE PRECISION array, dimension (LDV1T,Q)
  180. *> On entry, a Q-by-Q matrix. On exit, V1T is premultiplied
  181. *> by the transpose of the right singular vector
  182. *> matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
  183. *> \endverbatim
  184. *>
  185. *> \param[in] LDV1T
  186. *> \verbatim
  187. *> LDV1T is INTEGER
  188. *> The leading dimension of the array V1T, LDV1T >= MAX(1,Q).
  189. *> \endverbatim
  190. *>
  191. *> \param[in,out] V2T
  192. *> \verbatim
  193. *> V2T is DOUBLE PRECISION array, dimension (LDV2T,M-Q)
  194. *> On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is
  195. *> premultiplied by the transpose of the right
  196. *> singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
  197. *> [ B22 0 0 ; 0 0 I ].
  198. *> \endverbatim
  199. *>
  200. *> \param[in] LDV2T
  201. *> \verbatim
  202. *> LDV2T is INTEGER
  203. *> The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q).
  204. *> \endverbatim
  205. *>
  206. *> \param[out] B11D
  207. *> \verbatim
  208. *> B11D is DOUBLE PRECISION array, dimension (Q)
  209. *> When DBBCSD converges, B11D contains the cosines of THETA(1),
  210. *> ..., THETA(Q). If DBBCSD fails to converge, then B11D
  211. *> contains the diagonal of the partially reduced top-left
  212. *> block.
  213. *> \endverbatim
  214. *>
  215. *> \param[out] B11E
  216. *> \verbatim
  217. *> B11E is DOUBLE PRECISION array, dimension (Q-1)
  218. *> When DBBCSD converges, B11E contains zeros. If DBBCSD fails
  219. *> to converge, then B11E contains the superdiagonal of the
  220. *> partially reduced top-left block.
  221. *> \endverbatim
  222. *>
  223. *> \param[out] B12D
  224. *> \verbatim
  225. *> B12D is DOUBLE PRECISION array, dimension (Q)
  226. *> When DBBCSD converges, B12D contains the negative sines of
  227. *> THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then
  228. *> B12D contains the diagonal of the partially reduced top-right
  229. *> block.
  230. *> \endverbatim
  231. *>
  232. *> \param[out] B12E
  233. *> \verbatim
  234. *> B12E is DOUBLE PRECISION array, dimension (Q-1)
  235. *> When DBBCSD converges, B12E contains zeros. If DBBCSD fails
  236. *> to converge, then B12E contains the subdiagonal of the
  237. *> partially reduced top-right block.
  238. *> \endverbatim
  239. *>
  240. *> \param[out] B21D
  241. *> \verbatim
  242. *> B21D is DOUBLE PRECISION array, dimension (Q)
  243. *> When DBBCSD converges, B21D contains the negative sines of
  244. *> THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then
  245. *> B21D contains the diagonal of the partially reduced bottom-left
  246. *> block.
  247. *> \endverbatim
  248. *>
  249. *> \param[out] B21E
  250. *> \verbatim
  251. *> B21E is DOUBLE PRECISION array, dimension (Q-1)
  252. *> When DBBCSD converges, B21E contains zeros. If DBBCSD fails
  253. *> to converge, then B21E contains the subdiagonal of the
  254. *> partially reduced bottom-left block.
  255. *> \endverbatim
  256. *>
  257. *> \param[out] B22D
  258. *> \verbatim
  259. *> B22D is DOUBLE PRECISION array, dimension (Q)
  260. *> When DBBCSD converges, B22D contains the negative sines of
  261. *> THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then
  262. *> B22D contains the diagonal of the partially reduced bottom-right
  263. *> block.
  264. *> \endverbatim
  265. *>
  266. *> \param[out] B22E
  267. *> \verbatim
  268. *> B22E is DOUBLE PRECISION array, dimension (Q-1)
  269. *> When DBBCSD converges, B22E contains zeros. If DBBCSD fails
  270. *> to converge, then B22E contains the subdiagonal of the
  271. *> partially reduced bottom-right block.
  272. *> \endverbatim
  273. *>
  274. *> \param[out] WORK
  275. *> \verbatim
  276. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  277. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  278. *> \endverbatim
  279. *>
  280. *> \param[in] LWORK
  281. *> \verbatim
  282. *> LWORK is INTEGER
  283. *> The dimension of the array WORK. LWORK >= MAX(1,8*Q).
  284. *>
  285. *> If LWORK = -1, then a workspace query is assumed; the
  286. *> routine only calculates the optimal size of the WORK array,
  287. *> returns this value as the first entry of the work array, and
  288. *> no error message related to LWORK is issued by XERBLA.
  289. *> \endverbatim
  290. *>
  291. *> \param[out] INFO
  292. *> \verbatim
  293. *> INFO is INTEGER
  294. *> = 0: successful exit.
  295. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  296. *> > 0: if DBBCSD did not converge, INFO specifies the number
  297. *> of nonzero entries in PHI, and B11D, B11E, etc.,
  298. *> contain the partially reduced matrix.
  299. *> \endverbatim
  300. *
  301. *> \par Internal Parameters:
  302. * =========================
  303. *>
  304. *> \verbatim
  305. *> TOLMUL DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
  306. *> TOLMUL controls the convergence criterion of the QR loop.
  307. *> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
  308. *> are within TOLMUL*EPS of either bound.
  309. *> \endverbatim
  310. *
  311. *> \par References:
  312. * ================
  313. *>
  314. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  315. *> Algorithms, 50(1):33-65, 2009.
  316. *
  317. * Authors:
  318. * ========
  319. *
  320. *> \author Univ. of Tennessee
  321. *> \author Univ. of California Berkeley
  322. *> \author Univ. of Colorado Denver
  323. *> \author NAG Ltd.
  324. *
  325. *> \ingroup doubleOTHERcomputational
  326. *
  327. * =====================================================================
  328. SUBROUTINE DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
  329. $ THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
  330. $ V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
  331. $ B22D, B22E, WORK, LWORK, INFO )
  332. *
  333. * -- LAPACK computational routine --
  334. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  335. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  336. *
  337. * .. Scalar Arguments ..
  338. CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
  339. INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
  340. * ..
  341. * .. Array Arguments ..
  342. DOUBLE PRECISION B11D( * ), B11E( * ), B12D( * ), B12E( * ),
  343. $ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
  344. $ PHI( * ), THETA( * ), WORK( * )
  345. DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
  346. $ V2T( LDV2T, * )
  347. * ..
  348. *
  349. * ===================================================================
  350. *
  351. * .. Parameters ..
  352. INTEGER MAXITR
  353. PARAMETER ( MAXITR = 6 )
  354. DOUBLE PRECISION HUNDRED, MEIGHTH, ONE, TEN, ZERO
  355. PARAMETER ( HUNDRED = 100.0D0, MEIGHTH = -0.125D0,
  356. $ ONE = 1.0D0, TEN = 10.0D0, ZERO = 0.0D0 )
  357. DOUBLE PRECISION NEGONE
  358. PARAMETER ( NEGONE = -1.0D0 )
  359. DOUBLE PRECISION PIOVER2
  360. PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210D0 )
  361. * ..
  362. * .. Local Scalars ..
  363. LOGICAL COLMAJOR, LQUERY, RESTART11, RESTART12,
  364. $ RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
  365. $ WANTV2T
  366. INTEGER I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
  367. $ IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
  368. $ LWORKMIN, LWORKOPT, MAXIT, MINI
  369. DOUBLE PRECISION B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
  370. $ EPS, MU, NU, R, SIGMA11, SIGMA21,
  371. $ TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
  372. $ UNFL, X1, X2, Y1, Y2
  373. *
  374. * .. External Subroutines ..
  375. EXTERNAL DLASR, DSCAL, DSWAP, DLARTGP, DLARTGS, DLAS2,
  376. $ XERBLA
  377. * ..
  378. * .. External Functions ..
  379. DOUBLE PRECISION DLAMCH
  380. LOGICAL LSAME
  381. EXTERNAL LSAME, DLAMCH
  382. * ..
  383. * .. Intrinsic Functions ..
  384. INTRINSIC ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
  385. * ..
  386. * .. Executable Statements ..
  387. *
  388. * Test input arguments
  389. *
  390. INFO = 0
  391. LQUERY = LWORK .EQ. -1
  392. WANTU1 = LSAME( JOBU1, 'Y' )
  393. WANTU2 = LSAME( JOBU2, 'Y' )
  394. WANTV1T = LSAME( JOBV1T, 'Y' )
  395. WANTV2T = LSAME( JOBV2T, 'Y' )
  396. COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  397. *
  398. IF( M .LT. 0 ) THEN
  399. INFO = -6
  400. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  401. INFO = -7
  402. ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  403. INFO = -8
  404. ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
  405. INFO = -8
  406. ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  407. INFO = -12
  408. ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
  409. INFO = -14
  410. ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  411. INFO = -16
  412. ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
  413. INFO = -18
  414. END IF
  415. *
  416. * Quick return if Q = 0
  417. *
  418. IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
  419. LWORKMIN = 1
  420. WORK(1) = LWORKMIN
  421. RETURN
  422. END IF
  423. *
  424. * Compute workspace
  425. *
  426. IF( INFO .EQ. 0 ) THEN
  427. IU1CS = 1
  428. IU1SN = IU1CS + Q
  429. IU2CS = IU1SN + Q
  430. IU2SN = IU2CS + Q
  431. IV1TCS = IU2SN + Q
  432. IV1TSN = IV1TCS + Q
  433. IV2TCS = IV1TSN + Q
  434. IV2TSN = IV2TCS + Q
  435. LWORKOPT = IV2TSN + Q - 1
  436. LWORKMIN = LWORKOPT
  437. WORK(1) = LWORKOPT
  438. IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  439. INFO = -28
  440. END IF
  441. END IF
  442. *
  443. IF( INFO .NE. 0 ) THEN
  444. CALL XERBLA( 'DBBCSD', -INFO )
  445. RETURN
  446. ELSE IF( LQUERY ) THEN
  447. RETURN
  448. END IF
  449. *
  450. * Get machine constants
  451. *
  452. EPS = DLAMCH( 'Epsilon' )
  453. UNFL = DLAMCH( 'Safe minimum' )
  454. TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
  455. TOL = TOLMUL*EPS
  456. THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
  457. *
  458. * Test for negligible sines or cosines
  459. *
  460. DO I = 1, Q
  461. IF( THETA(I) .LT. THRESH ) THEN
  462. THETA(I) = ZERO
  463. ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
  464. THETA(I) = PIOVER2
  465. END IF
  466. END DO
  467. DO I = 1, Q-1
  468. IF( PHI(I) .LT. THRESH ) THEN
  469. PHI(I) = ZERO
  470. ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
  471. PHI(I) = PIOVER2
  472. END IF
  473. END DO
  474. *
  475. * Initial deflation
  476. *
  477. IMAX = Q
  478. DO WHILE( IMAX .GT. 1 )
  479. IF( PHI(IMAX-1) .NE. ZERO ) THEN
  480. EXIT
  481. END IF
  482. IMAX = IMAX - 1
  483. END DO
  484. IMIN = IMAX - 1
  485. IF ( IMIN .GT. 1 ) THEN
  486. DO WHILE( PHI(IMIN-1) .NE. ZERO )
  487. IMIN = IMIN - 1
  488. IF ( IMIN .LE. 1 ) EXIT
  489. END DO
  490. END IF
  491. *
  492. * Initialize iteration counter
  493. *
  494. MAXIT = MAXITR*Q*Q
  495. ITER = 0
  496. *
  497. * Begin main iteration loop
  498. *
  499. DO WHILE( IMAX .GT. 1 )
  500. *
  501. * Compute the matrix entries
  502. *
  503. B11D(IMIN) = COS( THETA(IMIN) )
  504. B21D(IMIN) = -SIN( THETA(IMIN) )
  505. DO I = IMIN, IMAX - 1
  506. B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
  507. B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
  508. B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
  509. B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
  510. B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
  511. B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
  512. B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
  513. B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
  514. END DO
  515. B12D(IMAX) = SIN( THETA(IMAX) )
  516. B22D(IMAX) = COS( THETA(IMAX) )
  517. *
  518. * Abort if not converging; otherwise, increment ITER
  519. *
  520. IF( ITER .GT. MAXIT ) THEN
  521. INFO = 0
  522. DO I = 1, Q
  523. IF( PHI(I) .NE. ZERO )
  524. $ INFO = INFO + 1
  525. END DO
  526. RETURN
  527. END IF
  528. *
  529. ITER = ITER + IMAX - IMIN
  530. *
  531. * Compute shifts
  532. *
  533. THETAMAX = THETA(IMIN)
  534. THETAMIN = THETA(IMIN)
  535. DO I = IMIN+1, IMAX
  536. IF( THETA(I) > THETAMAX )
  537. $ THETAMAX = THETA(I)
  538. IF( THETA(I) < THETAMIN )
  539. $ THETAMIN = THETA(I)
  540. END DO
  541. *
  542. IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
  543. *
  544. * Zero on diagonals of B11 and B22; induce deflation with a
  545. * zero shift
  546. *
  547. MU = ZERO
  548. NU = ONE
  549. *
  550. ELSE IF( THETAMIN .LT. THRESH ) THEN
  551. *
  552. * Zero on diagonals of B12 and B22; induce deflation with a
  553. * zero shift
  554. *
  555. MU = ONE
  556. NU = ZERO
  557. *
  558. ELSE
  559. *
  560. * Compute shifts for B11 and B21 and use the lesser
  561. *
  562. CALL DLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
  563. $ DUMMY )
  564. CALL DLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
  565. $ DUMMY )
  566. *
  567. IF( SIGMA11 .LE. SIGMA21 ) THEN
  568. MU = SIGMA11
  569. NU = SQRT( ONE - MU**2 )
  570. IF( MU .LT. THRESH ) THEN
  571. MU = ZERO
  572. NU = ONE
  573. END IF
  574. ELSE
  575. NU = SIGMA21
  576. MU = SQRT( 1.0 - NU**2 )
  577. IF( NU .LT. THRESH ) THEN
  578. MU = ONE
  579. NU = ZERO
  580. END IF
  581. END IF
  582. END IF
  583. *
  584. * Rotate to produce bulges in B11 and B21
  585. *
  586. IF( MU .LE. NU ) THEN
  587. CALL DLARTGS( B11D(IMIN), B11E(IMIN), MU,
  588. $ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
  589. ELSE
  590. CALL DLARTGS( B21D(IMIN), B21E(IMIN), NU,
  591. $ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
  592. END IF
  593. *
  594. TEMP = WORK(IV1TCS+IMIN-1)*B11D(IMIN) +
  595. $ WORK(IV1TSN+IMIN-1)*B11E(IMIN)
  596. B11E(IMIN) = WORK(IV1TCS+IMIN-1)*B11E(IMIN) -
  597. $ WORK(IV1TSN+IMIN-1)*B11D(IMIN)
  598. B11D(IMIN) = TEMP
  599. B11BULGE = WORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
  600. B11D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
  601. TEMP = WORK(IV1TCS+IMIN-1)*B21D(IMIN) +
  602. $ WORK(IV1TSN+IMIN-1)*B21E(IMIN)
  603. B21E(IMIN) = WORK(IV1TCS+IMIN-1)*B21E(IMIN) -
  604. $ WORK(IV1TSN+IMIN-1)*B21D(IMIN)
  605. B21D(IMIN) = TEMP
  606. B21BULGE = WORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
  607. B21D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
  608. *
  609. * Compute THETA(IMIN)
  610. *
  611. THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
  612. $ SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
  613. *
  614. * Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
  615. *
  616. IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
  617. CALL DLARTGP( B11BULGE, B11D(IMIN), WORK(IU1SN+IMIN-1),
  618. $ WORK(IU1CS+IMIN-1), R )
  619. ELSE IF( MU .LE. NU ) THEN
  620. CALL DLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
  621. $ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
  622. ELSE
  623. CALL DLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
  624. $ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
  625. END IF
  626. IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
  627. CALL DLARTGP( B21BULGE, B21D(IMIN), WORK(IU2SN+IMIN-1),
  628. $ WORK(IU2CS+IMIN-1), R )
  629. ELSE IF( NU .LT. MU ) THEN
  630. CALL DLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
  631. $ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
  632. ELSE
  633. CALL DLARTGS( B22D(IMIN), B22E(IMIN), MU,
  634. $ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
  635. END IF
  636. WORK(IU2CS+IMIN-1) = -WORK(IU2CS+IMIN-1)
  637. WORK(IU2SN+IMIN-1) = -WORK(IU2SN+IMIN-1)
  638. *
  639. TEMP = WORK(IU1CS+IMIN-1)*B11E(IMIN) +
  640. $ WORK(IU1SN+IMIN-1)*B11D(IMIN+1)
  641. B11D(IMIN+1) = WORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
  642. $ WORK(IU1SN+IMIN-1)*B11E(IMIN)
  643. B11E(IMIN) = TEMP
  644. IF( IMAX .GT. IMIN+1 ) THEN
  645. B11BULGE = WORK(IU1SN+IMIN-1)*B11E(IMIN+1)
  646. B11E(IMIN+1) = WORK(IU1CS+IMIN-1)*B11E(IMIN+1)
  647. END IF
  648. TEMP = WORK(IU1CS+IMIN-1)*B12D(IMIN) +
  649. $ WORK(IU1SN+IMIN-1)*B12E(IMIN)
  650. B12E(IMIN) = WORK(IU1CS+IMIN-1)*B12E(IMIN) -
  651. $ WORK(IU1SN+IMIN-1)*B12D(IMIN)
  652. B12D(IMIN) = TEMP
  653. B12BULGE = WORK(IU1SN+IMIN-1)*B12D(IMIN+1)
  654. B12D(IMIN+1) = WORK(IU1CS+IMIN-1)*B12D(IMIN+1)
  655. TEMP = WORK(IU2CS+IMIN-1)*B21E(IMIN) +
  656. $ WORK(IU2SN+IMIN-1)*B21D(IMIN+1)
  657. B21D(IMIN+1) = WORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
  658. $ WORK(IU2SN+IMIN-1)*B21E(IMIN)
  659. B21E(IMIN) = TEMP
  660. IF( IMAX .GT. IMIN+1 ) THEN
  661. B21BULGE = WORK(IU2SN+IMIN-1)*B21E(IMIN+1)
  662. B21E(IMIN+1) = WORK(IU2CS+IMIN-1)*B21E(IMIN+1)
  663. END IF
  664. TEMP = WORK(IU2CS+IMIN-1)*B22D(IMIN) +
  665. $ WORK(IU2SN+IMIN-1)*B22E(IMIN)
  666. B22E(IMIN) = WORK(IU2CS+IMIN-1)*B22E(IMIN) -
  667. $ WORK(IU2SN+IMIN-1)*B22D(IMIN)
  668. B22D(IMIN) = TEMP
  669. B22BULGE = WORK(IU2SN+IMIN-1)*B22D(IMIN+1)
  670. B22D(IMIN+1) = WORK(IU2CS+IMIN-1)*B22D(IMIN+1)
  671. *
  672. * Inner loop: chase bulges from B11(IMIN,IMIN+2),
  673. * B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
  674. * bottom-right
  675. *
  676. DO I = IMIN+1, IMAX-1
  677. *
  678. * Compute PHI(I-1)
  679. *
  680. X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
  681. X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
  682. Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
  683. Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
  684. *
  685. PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
  686. *
  687. * Determine if there are bulges to chase or if a new direct
  688. * summand has been reached
  689. *
  690. RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
  691. RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
  692. RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  693. RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  694. *
  695. * If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
  696. * B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
  697. * chasing by applying the original shift again.
  698. *
  699. IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
  700. CALL DLARTGP( X2, X1, WORK(IV1TSN+I-1), WORK(IV1TCS+I-1),
  701. $ R )
  702. ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
  703. CALL DLARTGP( B11BULGE, B11E(I-1), WORK(IV1TSN+I-1),
  704. $ WORK(IV1TCS+I-1), R )
  705. ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
  706. CALL DLARTGP( B21BULGE, B21E(I-1), WORK(IV1TSN+I-1),
  707. $ WORK(IV1TCS+I-1), R )
  708. ELSE IF( MU .LE. NU ) THEN
  709. CALL DLARTGS( B11D(I), B11E(I), MU, WORK(IV1TCS+I-1),
  710. $ WORK(IV1TSN+I-1) )
  711. ELSE
  712. CALL DLARTGS( B21D(I), B21E(I), NU, WORK(IV1TCS+I-1),
  713. $ WORK(IV1TSN+I-1) )
  714. END IF
  715. WORK(IV1TCS+I-1) = -WORK(IV1TCS+I-1)
  716. WORK(IV1TSN+I-1) = -WORK(IV1TSN+I-1)
  717. IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  718. CALL DLARTGP( Y2, Y1, WORK(IV2TSN+I-1-1),
  719. $ WORK(IV2TCS+I-1-1), R )
  720. ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  721. CALL DLARTGP( B12BULGE, B12D(I-1), WORK(IV2TSN+I-1-1),
  722. $ WORK(IV2TCS+I-1-1), R )
  723. ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  724. CALL DLARTGP( B22BULGE, B22D(I-1), WORK(IV2TSN+I-1-1),
  725. $ WORK(IV2TCS+I-1-1), R )
  726. ELSE IF( NU .LT. MU ) THEN
  727. CALL DLARTGS( B12E(I-1), B12D(I), NU, WORK(IV2TCS+I-1-1),
  728. $ WORK(IV2TSN+I-1-1) )
  729. ELSE
  730. CALL DLARTGS( B22E(I-1), B22D(I), MU, WORK(IV2TCS+I-1-1),
  731. $ WORK(IV2TSN+I-1-1) )
  732. END IF
  733. *
  734. TEMP = WORK(IV1TCS+I-1)*B11D(I) + WORK(IV1TSN+I-1)*B11E(I)
  735. B11E(I) = WORK(IV1TCS+I-1)*B11E(I) -
  736. $ WORK(IV1TSN+I-1)*B11D(I)
  737. B11D(I) = TEMP
  738. B11BULGE = WORK(IV1TSN+I-1)*B11D(I+1)
  739. B11D(I+1) = WORK(IV1TCS+I-1)*B11D(I+1)
  740. TEMP = WORK(IV1TCS+I-1)*B21D(I) + WORK(IV1TSN+I-1)*B21E(I)
  741. B21E(I) = WORK(IV1TCS+I-1)*B21E(I) -
  742. $ WORK(IV1TSN+I-1)*B21D(I)
  743. B21D(I) = TEMP
  744. B21BULGE = WORK(IV1TSN+I-1)*B21D(I+1)
  745. B21D(I+1) = WORK(IV1TCS+I-1)*B21D(I+1)
  746. TEMP = WORK(IV2TCS+I-1-1)*B12E(I-1) +
  747. $ WORK(IV2TSN+I-1-1)*B12D(I)
  748. B12D(I) = WORK(IV2TCS+I-1-1)*B12D(I) -
  749. $ WORK(IV2TSN+I-1-1)*B12E(I-1)
  750. B12E(I-1) = TEMP
  751. B12BULGE = WORK(IV2TSN+I-1-1)*B12E(I)
  752. B12E(I) = WORK(IV2TCS+I-1-1)*B12E(I)
  753. TEMP = WORK(IV2TCS+I-1-1)*B22E(I-1) +
  754. $ WORK(IV2TSN+I-1-1)*B22D(I)
  755. B22D(I) = WORK(IV2TCS+I-1-1)*B22D(I) -
  756. $ WORK(IV2TSN+I-1-1)*B22E(I-1)
  757. B22E(I-1) = TEMP
  758. B22BULGE = WORK(IV2TSN+I-1-1)*B22E(I)
  759. B22E(I) = WORK(IV2TCS+I-1-1)*B22E(I)
  760. *
  761. * Compute THETA(I)
  762. *
  763. X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
  764. X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
  765. Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
  766. Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
  767. *
  768. THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
  769. *
  770. * Determine if there are bulges to chase or if a new direct
  771. * summand has been reached
  772. *
  773. RESTART11 = B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
  774. RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  775. RESTART21 = B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
  776. RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  777. *
  778. * If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
  779. * B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
  780. * chasing by applying the original shift again.
  781. *
  782. IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
  783. CALL DLARTGP( X2, X1, WORK(IU1SN+I-1), WORK(IU1CS+I-1),
  784. $ R )
  785. ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
  786. CALL DLARTGP( B11BULGE, B11D(I), WORK(IU1SN+I-1),
  787. $ WORK(IU1CS+I-1), R )
  788. ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
  789. CALL DLARTGP( B12BULGE, B12E(I-1), WORK(IU1SN+I-1),
  790. $ WORK(IU1CS+I-1), R )
  791. ELSE IF( MU .LE. NU ) THEN
  792. CALL DLARTGS( B11E(I), B11D(I+1), MU, WORK(IU1CS+I-1),
  793. $ WORK(IU1SN+I-1) )
  794. ELSE
  795. CALL DLARTGS( B12D(I), B12E(I), NU, WORK(IU1CS+I-1),
  796. $ WORK(IU1SN+I-1) )
  797. END IF
  798. IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
  799. CALL DLARTGP( Y2, Y1, WORK(IU2SN+I-1), WORK(IU2CS+I-1),
  800. $ R )
  801. ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
  802. CALL DLARTGP( B21BULGE, B21D(I), WORK(IU2SN+I-1),
  803. $ WORK(IU2CS+I-1), R )
  804. ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
  805. CALL DLARTGP( B22BULGE, B22E(I-1), WORK(IU2SN+I-1),
  806. $ WORK(IU2CS+I-1), R )
  807. ELSE IF( NU .LT. MU ) THEN
  808. CALL DLARTGS( B21E(I), B21E(I+1), NU, WORK(IU2CS+I-1),
  809. $ WORK(IU2SN+I-1) )
  810. ELSE
  811. CALL DLARTGS( B22D(I), B22E(I), MU, WORK(IU2CS+I-1),
  812. $ WORK(IU2SN+I-1) )
  813. END IF
  814. WORK(IU2CS+I-1) = -WORK(IU2CS+I-1)
  815. WORK(IU2SN+I-1) = -WORK(IU2SN+I-1)
  816. *
  817. TEMP = WORK(IU1CS+I-1)*B11E(I) + WORK(IU1SN+I-1)*B11D(I+1)
  818. B11D(I+1) = WORK(IU1CS+I-1)*B11D(I+1) -
  819. $ WORK(IU1SN+I-1)*B11E(I)
  820. B11E(I) = TEMP
  821. IF( I .LT. IMAX - 1 ) THEN
  822. B11BULGE = WORK(IU1SN+I-1)*B11E(I+1)
  823. B11E(I+1) = WORK(IU1CS+I-1)*B11E(I+1)
  824. END IF
  825. TEMP = WORK(IU2CS+I-1)*B21E(I) + WORK(IU2SN+I-1)*B21D(I+1)
  826. B21D(I+1) = WORK(IU2CS+I-1)*B21D(I+1) -
  827. $ WORK(IU2SN+I-1)*B21E(I)
  828. B21E(I) = TEMP
  829. IF( I .LT. IMAX - 1 ) THEN
  830. B21BULGE = WORK(IU2SN+I-1)*B21E(I+1)
  831. B21E(I+1) = WORK(IU2CS+I-1)*B21E(I+1)
  832. END IF
  833. TEMP = WORK(IU1CS+I-1)*B12D(I) + WORK(IU1SN+I-1)*B12E(I)
  834. B12E(I) = WORK(IU1CS+I-1)*B12E(I) - WORK(IU1SN+I-1)*B12D(I)
  835. B12D(I) = TEMP
  836. B12BULGE = WORK(IU1SN+I-1)*B12D(I+1)
  837. B12D(I+1) = WORK(IU1CS+I-1)*B12D(I+1)
  838. TEMP = WORK(IU2CS+I-1)*B22D(I) + WORK(IU2SN+I-1)*B22E(I)
  839. B22E(I) = WORK(IU2CS+I-1)*B22E(I) - WORK(IU2SN+I-1)*B22D(I)
  840. B22D(I) = TEMP
  841. B22BULGE = WORK(IU2SN+I-1)*B22D(I+1)
  842. B22D(I+1) = WORK(IU2CS+I-1)*B22D(I+1)
  843. *
  844. END DO
  845. *
  846. * Compute PHI(IMAX-1)
  847. *
  848. X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
  849. $ COS(THETA(IMAX-1))*B21E(IMAX-1)
  850. Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
  851. $ COS(THETA(IMAX-1))*B22D(IMAX-1)
  852. Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
  853. *
  854. PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
  855. *
  856. * Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
  857. *
  858. RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
  859. RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
  860. *
  861. IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  862. CALL DLARTGP( Y2, Y1, WORK(IV2TSN+IMAX-1-1),
  863. $ WORK(IV2TCS+IMAX-1-1), R )
  864. ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  865. CALL DLARTGP( B12BULGE, B12D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
  866. $ WORK(IV2TCS+IMAX-1-1), R )
  867. ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  868. CALL DLARTGP( B22BULGE, B22D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
  869. $ WORK(IV2TCS+IMAX-1-1), R )
  870. ELSE IF( NU .LT. MU ) THEN
  871. CALL DLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
  872. $ WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
  873. ELSE
  874. CALL DLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
  875. $ WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
  876. END IF
  877. *
  878. TEMP = WORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
  879. $ WORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
  880. B12D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
  881. $ WORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
  882. B12E(IMAX-1) = TEMP
  883. TEMP = WORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
  884. $ WORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
  885. B22D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
  886. $ WORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
  887. B22E(IMAX-1) = TEMP
  888. *
  889. * Update singular vectors
  890. *
  891. IF( WANTU1 ) THEN
  892. IF( COLMAJOR ) THEN
  893. CALL DLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
  894. $ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
  895. $ U1(1,IMIN), LDU1 )
  896. ELSE
  897. CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
  898. $ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
  899. $ U1(IMIN,1), LDU1 )
  900. END IF
  901. END IF
  902. IF( WANTU2 ) THEN
  903. IF( COLMAJOR ) THEN
  904. CALL DLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
  905. $ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
  906. $ U2(1,IMIN), LDU2 )
  907. ELSE
  908. CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
  909. $ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
  910. $ U2(IMIN,1), LDU2 )
  911. END IF
  912. END IF
  913. IF( WANTV1T ) THEN
  914. IF( COLMAJOR ) THEN
  915. CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
  916. $ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
  917. $ V1T(IMIN,1), LDV1T )
  918. ELSE
  919. CALL DLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
  920. $ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
  921. $ V1T(1,IMIN), LDV1T )
  922. END IF
  923. END IF
  924. IF( WANTV2T ) THEN
  925. IF( COLMAJOR ) THEN
  926. CALL DLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
  927. $ WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
  928. $ V2T(IMIN,1), LDV2T )
  929. ELSE
  930. CALL DLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
  931. $ WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
  932. $ V2T(1,IMIN), LDV2T )
  933. END IF
  934. END IF
  935. *
  936. * Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
  937. *
  938. IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
  939. B11D(IMAX) = -B11D(IMAX)
  940. B21D(IMAX) = -B21D(IMAX)
  941. IF( WANTV1T ) THEN
  942. IF( COLMAJOR ) THEN
  943. CALL DSCAL( Q, NEGONE, V1T(IMAX,1), LDV1T )
  944. ELSE
  945. CALL DSCAL( Q, NEGONE, V1T(1,IMAX), 1 )
  946. END IF
  947. END IF
  948. END IF
  949. *
  950. * Compute THETA(IMAX)
  951. *
  952. X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
  953. $ SIN(PHI(IMAX-1))*B12E(IMAX-1)
  954. Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
  955. $ SIN(PHI(IMAX-1))*B22E(IMAX-1)
  956. *
  957. THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
  958. *
  959. * Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
  960. * and B22(IMAX,IMAX-1)
  961. *
  962. IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
  963. B12D(IMAX) = -B12D(IMAX)
  964. IF( WANTU1 ) THEN
  965. IF( COLMAJOR ) THEN
  966. CALL DSCAL( P, NEGONE, U1(1,IMAX), 1 )
  967. ELSE
  968. CALL DSCAL( P, NEGONE, U1(IMAX,1), LDU1 )
  969. END IF
  970. END IF
  971. END IF
  972. IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
  973. B22D(IMAX) = -B22D(IMAX)
  974. IF( WANTU2 ) THEN
  975. IF( COLMAJOR ) THEN
  976. CALL DSCAL( M-P, NEGONE, U2(1,IMAX), 1 )
  977. ELSE
  978. CALL DSCAL( M-P, NEGONE, U2(IMAX,1), LDU2 )
  979. END IF
  980. END IF
  981. END IF
  982. *
  983. * Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
  984. *
  985. IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
  986. IF( WANTV2T ) THEN
  987. IF( COLMAJOR ) THEN
  988. CALL DSCAL( M-Q, NEGONE, V2T(IMAX,1), LDV2T )
  989. ELSE
  990. CALL DSCAL( M-Q, NEGONE, V2T(1,IMAX), 1 )
  991. END IF
  992. END IF
  993. END IF
  994. *
  995. * Test for negligible sines or cosines
  996. *
  997. DO I = IMIN, IMAX
  998. IF( THETA(I) .LT. THRESH ) THEN
  999. THETA(I) = ZERO
  1000. ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
  1001. THETA(I) = PIOVER2
  1002. END IF
  1003. END DO
  1004. DO I = IMIN, IMAX-1
  1005. IF( PHI(I) .LT. THRESH ) THEN
  1006. PHI(I) = ZERO
  1007. ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
  1008. PHI(I) = PIOVER2
  1009. END IF
  1010. END DO
  1011. *
  1012. * Deflate
  1013. *
  1014. IF (IMAX .GT. 1) THEN
  1015. DO WHILE( PHI(IMAX-1) .EQ. ZERO )
  1016. IMAX = IMAX - 1
  1017. IF (IMAX .LE. 1) EXIT
  1018. END DO
  1019. END IF
  1020. IF( IMIN .GT. IMAX - 1 )
  1021. $ IMIN = IMAX - 1
  1022. IF (IMIN .GT. 1) THEN
  1023. DO WHILE (PHI(IMIN-1) .NE. ZERO)
  1024. IMIN = IMIN - 1
  1025. IF (IMIN .LE. 1) EXIT
  1026. END DO
  1027. END IF
  1028. *
  1029. * Repeat main iteration loop
  1030. *
  1031. END DO
  1032. *
  1033. * Postprocessing: order THETA from least to greatest
  1034. *
  1035. DO I = 1, Q
  1036. *
  1037. MINI = I
  1038. THETAMIN = THETA(I)
  1039. DO J = I+1, Q
  1040. IF( THETA(J) .LT. THETAMIN ) THEN
  1041. MINI = J
  1042. THETAMIN = THETA(J)
  1043. END IF
  1044. END DO
  1045. *
  1046. IF( MINI .NE. I ) THEN
  1047. THETA(MINI) = THETA(I)
  1048. THETA(I) = THETAMIN
  1049. IF( COLMAJOR ) THEN
  1050. IF( WANTU1 )
  1051. $ CALL DSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
  1052. IF( WANTU2 )
  1053. $ CALL DSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
  1054. IF( WANTV1T )
  1055. $ CALL DSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
  1056. IF( WANTV2T )
  1057. $ CALL DSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
  1058. $ LDV2T )
  1059. ELSE
  1060. IF( WANTU1 )
  1061. $ CALL DSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
  1062. IF( WANTU2 )
  1063. $ CALL DSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
  1064. IF( WANTV1T )
  1065. $ CALL DSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
  1066. IF( WANTV2T )
  1067. $ CALL DSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
  1068. END IF
  1069. END IF
  1070. *
  1071. END DO
  1072. *
  1073. RETURN
  1074. *
  1075. * End of DBBCSD
  1076. *
  1077. END