You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zheevr.f 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. *> \brief <b> ZHEEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHEEVR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  22. * ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
  23. * RWORK, LRWORK, IWORK, LIWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
  28. * $ M, N
  29. * DOUBLE PRECISION ABSTOL, VL, VU
  30. * ..
  31. * .. Array Arguments ..
  32. * INTEGER ISUPPZ( * ), IWORK( * )
  33. * DOUBLE PRECISION RWORK( * ), W( * )
  34. * COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
  44. *> of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
  45. *> be selected by specifying either a range of values or a range of
  46. *> indices for the desired eigenvalues.
  47. *>
  48. *> ZHEEVR first reduces the matrix A to tridiagonal form T with a call
  49. *> to ZHETRD. Then, whenever possible, ZHEEVR calls ZSTEMR to compute
  50. *> eigenspectrum using Relatively Robust Representations. ZSTEMR
  51. *> computes eigenvalues by the dqds algorithm, while orthogonal
  52. *> eigenvectors are computed from various "good" L D L^T representations
  53. *> (also known as Relatively Robust Representations). Gram-Schmidt
  54. *> orthogonalization is avoided as far as possible. More specifically,
  55. *> the various steps of the algorithm are as follows.
  56. *>
  57. *> For each unreduced block (submatrix) of T,
  58. *> (a) Compute T - sigma I = L D L^T, so that L and D
  59. *> define all the wanted eigenvalues to high relative accuracy.
  60. *> This means that small relative changes in the entries of D and L
  61. *> cause only small relative changes in the eigenvalues and
  62. *> eigenvectors. The standard (unfactored) representation of the
  63. *> tridiagonal matrix T does not have this property in general.
  64. *> (b) Compute the eigenvalues to suitable accuracy.
  65. *> If the eigenvectors are desired, the algorithm attains full
  66. *> accuracy of the computed eigenvalues only right before
  67. *> the corresponding vectors have to be computed, see steps c) and d).
  68. *> (c) For each cluster of close eigenvalues, select a new
  69. *> shift close to the cluster, find a new factorization, and refine
  70. *> the shifted eigenvalues to suitable accuracy.
  71. *> (d) For each eigenvalue with a large enough relative separation compute
  72. *> the corresponding eigenvector by forming a rank revealing twisted
  73. *> factorization. Go back to (c) for any clusters that remain.
  74. *>
  75. *> The desired accuracy of the output can be specified by the input
  76. *> parameter ABSTOL.
  77. *>
  78. *> For more details, see DSTEMR's documentation and:
  79. *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
  80. *> to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
  81. *> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
  82. *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
  83. *> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
  84. *> 2004. Also LAPACK Working Note 154.
  85. *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
  86. *> tridiagonal eigenvalue/eigenvector problem",
  87. *> Computer Science Division Technical Report No. UCB/CSD-97-971,
  88. *> UC Berkeley, May 1997.
  89. *>
  90. *>
  91. *> Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested
  92. *> on machines which conform to the ieee-754 floating point standard.
  93. *> ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
  94. *> when partial spectrum requests are made.
  95. *>
  96. *> Normal execution of ZSTEMR may create NaNs and infinities and
  97. *> hence may abort due to a floating point exception in environments
  98. *> which do not handle NaNs and infinities in the ieee standard default
  99. *> manner.
  100. *> \endverbatim
  101. *
  102. * Arguments:
  103. * ==========
  104. *
  105. *> \param[in] JOBZ
  106. *> \verbatim
  107. *> JOBZ is CHARACTER*1
  108. *> = 'N': Compute eigenvalues only;
  109. *> = 'V': Compute eigenvalues and eigenvectors.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] RANGE
  113. *> \verbatim
  114. *> RANGE is CHARACTER*1
  115. *> = 'A': all eigenvalues will be found.
  116. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  117. *> will be found.
  118. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  119. *> For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
  120. *> ZSTEIN are called
  121. *> \endverbatim
  122. *>
  123. *> \param[in] UPLO
  124. *> \verbatim
  125. *> UPLO is CHARACTER*1
  126. *> = 'U': Upper triangle of A is stored;
  127. *> = 'L': Lower triangle of A is stored.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] N
  131. *> \verbatim
  132. *> N is INTEGER
  133. *> The order of the matrix A. N >= 0.
  134. *> \endverbatim
  135. *>
  136. *> \param[in,out] A
  137. *> \verbatim
  138. *> A is COMPLEX*16 array, dimension (LDA, N)
  139. *> On entry, the Hermitian matrix A. If UPLO = 'U', the
  140. *> leading N-by-N upper triangular part of A contains the
  141. *> upper triangular part of the matrix A. If UPLO = 'L',
  142. *> the leading N-by-N lower triangular part of A contains
  143. *> the lower triangular part of the matrix A.
  144. *> On exit, the lower triangle (if UPLO='L') or the upper
  145. *> triangle (if UPLO='U') of A, including the diagonal, is
  146. *> destroyed.
  147. *> \endverbatim
  148. *>
  149. *> \param[in] LDA
  150. *> \verbatim
  151. *> LDA is INTEGER
  152. *> The leading dimension of the array A. LDA >= max(1,N).
  153. *> \endverbatim
  154. *>
  155. *> \param[in] VL
  156. *> \verbatim
  157. *> VL is DOUBLE PRECISION
  158. *> \endverbatim
  159. *>
  160. *> \param[in] VU
  161. *> \verbatim
  162. *> VU is DOUBLE PRECISION
  163. *> If RANGE='V', the lower and upper bounds of the interval to
  164. *> be searched for eigenvalues. VL < VU.
  165. *> Not referenced if RANGE = 'A' or 'I'.
  166. *> \endverbatim
  167. *>
  168. *> \param[in] IL
  169. *> \verbatim
  170. *> IL is INTEGER
  171. *> \endverbatim
  172. *>
  173. *> \param[in] IU
  174. *> \verbatim
  175. *> IU is INTEGER
  176. *> If RANGE='I', the indices (in ascending order) of the
  177. *> smallest and largest eigenvalues to be returned.
  178. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  179. *> Not referenced if RANGE = 'A' or 'V'.
  180. *> \endverbatim
  181. *>
  182. *> \param[in] ABSTOL
  183. *> \verbatim
  184. *> ABSTOL is DOUBLE PRECISION
  185. *> The absolute error tolerance for the eigenvalues.
  186. *> An approximate eigenvalue is accepted as converged
  187. *> when it is determined to lie in an interval [a,b]
  188. *> of width less than or equal to
  189. *>
  190. *> ABSTOL + EPS * max( |a|,|b| ) ,
  191. *>
  192. *> where EPS is the machine precision. If ABSTOL is less than
  193. *> or equal to zero, then EPS*|T| will be used in its place,
  194. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  195. *> by reducing A to tridiagonal form.
  196. *>
  197. *> See "Computing Small Singular Values of Bidiagonal Matrices
  198. *> with Guaranteed High Relative Accuracy," by Demmel and
  199. *> Kahan, LAPACK Working Note #3.
  200. *>
  201. *> If high relative accuracy is important, set ABSTOL to
  202. *> DLAMCH( 'Safe minimum' ). Doing so will guarantee that
  203. *> eigenvalues are computed to high relative accuracy when
  204. *> possible in future releases. The current code does not
  205. *> make any guarantees about high relative accuracy, but
  206. *> furutre releases will. See J. Barlow and J. Demmel,
  207. *> "Computing Accurate Eigensystems of Scaled Diagonally
  208. *> Dominant Matrices", LAPACK Working Note #7, for a discussion
  209. *> of which matrices define their eigenvalues to high relative
  210. *> accuracy.
  211. *> \endverbatim
  212. *>
  213. *> \param[out] M
  214. *> \verbatim
  215. *> M is INTEGER
  216. *> The total number of eigenvalues found. 0 <= M <= N.
  217. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  218. *> \endverbatim
  219. *>
  220. *> \param[out] W
  221. *> \verbatim
  222. *> W is DOUBLE PRECISION array, dimension (N)
  223. *> The first M elements contain the selected eigenvalues in
  224. *> ascending order.
  225. *> \endverbatim
  226. *>
  227. *> \param[out] Z
  228. *> \verbatim
  229. *> Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  230. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  231. *> contain the orthonormal eigenvectors of the matrix A
  232. *> corresponding to the selected eigenvalues, with the i-th
  233. *> column of Z holding the eigenvector associated with W(i).
  234. *> If JOBZ = 'N', then Z is not referenced.
  235. *> Note: the user must ensure that at least max(1,M) columns are
  236. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  237. *> is not known in advance and an upper bound must be used.
  238. *> \endverbatim
  239. *>
  240. *> \param[in] LDZ
  241. *> \verbatim
  242. *> LDZ is INTEGER
  243. *> The leading dimension of the array Z. LDZ >= 1, and if
  244. *> JOBZ = 'V', LDZ >= max(1,N).
  245. *> \endverbatim
  246. *>
  247. *> \param[out] ISUPPZ
  248. *> \verbatim
  249. *> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  250. *> The support of the eigenvectors in Z, i.e., the indices
  251. *> indicating the nonzero elements in Z. The i-th eigenvector
  252. *> is nonzero only in elements ISUPPZ( 2*i-1 ) through
  253. *> ISUPPZ( 2*i ).
  254. *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  255. *> \endverbatim
  256. *>
  257. *> \param[out] WORK
  258. *> \verbatim
  259. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  260. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  261. *> \endverbatim
  262. *>
  263. *> \param[in] LWORK
  264. *> \verbatim
  265. *> LWORK is INTEGER
  266. *> The length of the array WORK. LWORK >= max(1,2*N).
  267. *> For optimal efficiency, LWORK >= (NB+1)*N,
  268. *> where NB is the max of the blocksize for ZHETRD and for
  269. *> ZUNMTR as returned by ILAENV.
  270. *>
  271. *> If LWORK = -1, then a workspace query is assumed; the routine
  272. *> only calculates the optimal sizes of the WORK, RWORK and
  273. *> IWORK arrays, returns these values as the first entries of
  274. *> the WORK, RWORK and IWORK arrays, and no error message
  275. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  276. *> \endverbatim
  277. *>
  278. *> \param[out] RWORK
  279. *> \verbatim
  280. *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  281. *> On exit, if INFO = 0, RWORK(1) returns the optimal
  282. *> (and minimal) LRWORK.
  283. *> \endverbatim
  284. *>
  285. *> \param[in] LRWORK
  286. *> \verbatim
  287. *> LRWORK is INTEGER
  288. *> The length of the array RWORK. LRWORK >= max(1,24*N).
  289. *>
  290. *> If LRWORK = -1, then a workspace query is assumed; the
  291. *> routine only calculates the optimal sizes of the WORK, RWORK
  292. *> and IWORK arrays, returns these values as the first entries
  293. *> of the WORK, RWORK and IWORK arrays, and no error message
  294. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  295. *> \endverbatim
  296. *>
  297. *> \param[out] IWORK
  298. *> \verbatim
  299. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  300. *> On exit, if INFO = 0, IWORK(1) returns the optimal
  301. *> (and minimal) LIWORK.
  302. *> \endverbatim
  303. *>
  304. *> \param[in] LIWORK
  305. *> \verbatim
  306. *> LIWORK is INTEGER
  307. *> The dimension of the array IWORK. LIWORK >= max(1,10*N).
  308. *>
  309. *> If LIWORK = -1, then a workspace query is assumed; the
  310. *> routine only calculates the optimal sizes of the WORK, RWORK
  311. *> and IWORK arrays, returns these values as the first entries
  312. *> of the WORK, RWORK and IWORK arrays, and no error message
  313. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  314. *> \endverbatim
  315. *>
  316. *> \param[out] INFO
  317. *> \verbatim
  318. *> INFO is INTEGER
  319. *> = 0: successful exit
  320. *> < 0: if INFO = -i, the i-th argument had an illegal value
  321. *> > 0: Internal error
  322. *> \endverbatim
  323. *
  324. * Authors:
  325. * ========
  326. *
  327. *> \author Univ. of Tennessee
  328. *> \author Univ. of California Berkeley
  329. *> \author Univ. of Colorado Denver
  330. *> \author NAG Ltd.
  331. *
  332. *> \date September 2012
  333. *
  334. *> \ingroup complex16HEeigen
  335. *
  336. *> \par Contributors:
  337. * ==================
  338. *>
  339. *> Inderjit Dhillon, IBM Almaden, USA \n
  340. *> Osni Marques, LBNL/NERSC, USA \n
  341. *> Ken Stanley, Computer Science Division, University of
  342. *> California at Berkeley, USA \n
  343. *> Jason Riedy, Computer Science Division, University of
  344. *> California at Berkeley, USA \n
  345. *>
  346. * =====================================================================
  347. SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  348. $ ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
  349. $ RWORK, LRWORK, IWORK, LIWORK, INFO )
  350. *
  351. * -- LAPACK driver routine (version 3.4.2) --
  352. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  353. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  354. * September 2012
  355. *
  356. * .. Scalar Arguments ..
  357. CHARACTER JOBZ, RANGE, UPLO
  358. INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
  359. $ M, N
  360. DOUBLE PRECISION ABSTOL, VL, VU
  361. * ..
  362. * .. Array Arguments ..
  363. INTEGER ISUPPZ( * ), IWORK( * )
  364. DOUBLE PRECISION RWORK( * ), W( * )
  365. COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * )
  366. * ..
  367. *
  368. * =====================================================================
  369. *
  370. * .. Parameters ..
  371. DOUBLE PRECISION ZERO, ONE, TWO
  372. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  373. * ..
  374. * .. Local Scalars ..
  375. LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  376. $ WANTZ, TRYRAC
  377. CHARACTER ORDER
  378. INTEGER I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
  379. $ INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
  380. $ INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
  381. $ LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
  382. $ LWKOPT, LWMIN, NB, NSPLIT
  383. DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  384. $ SIGMA, SMLNUM, TMP1, VLL, VUU
  385. * ..
  386. * .. External Functions ..
  387. LOGICAL LSAME
  388. INTEGER ILAENV
  389. DOUBLE PRECISION DLAMCH, ZLANSY
  390. EXTERNAL LSAME, ILAENV, DLAMCH, ZLANSY
  391. * ..
  392. * .. External Subroutines ..
  393. EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  394. $ ZHETRD, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
  395. * ..
  396. * .. Intrinsic Functions ..
  397. INTRINSIC DBLE, MAX, MIN, SQRT
  398. * ..
  399. * .. Executable Statements ..
  400. *
  401. * Test the input parameters.
  402. *
  403. IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
  404. *
  405. LOWER = LSAME( UPLO, 'L' )
  406. WANTZ = LSAME( JOBZ, 'V' )
  407. ALLEIG = LSAME( RANGE, 'A' )
  408. VALEIG = LSAME( RANGE, 'V' )
  409. INDEIG = LSAME( RANGE, 'I' )
  410. *
  411. LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
  412. $ ( LIWORK.EQ.-1 ) )
  413. *
  414. LRWMIN = MAX( 1, 24*N )
  415. LIWMIN = MAX( 1, 10*N )
  416. LWMIN = MAX( 1, 2*N )
  417. *
  418. INFO = 0
  419. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  420. INFO = -1
  421. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  422. INFO = -2
  423. ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  424. INFO = -3
  425. ELSE IF( N.LT.0 ) THEN
  426. INFO = -4
  427. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  428. INFO = -6
  429. ELSE
  430. IF( VALEIG ) THEN
  431. IF( N.GT.0 .AND. VU.LE.VL )
  432. $ INFO = -8
  433. ELSE IF( INDEIG ) THEN
  434. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  435. INFO = -9
  436. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  437. INFO = -10
  438. END IF
  439. END IF
  440. END IF
  441. IF( INFO.EQ.0 ) THEN
  442. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  443. INFO = -15
  444. END IF
  445. END IF
  446. *
  447. IF( INFO.EQ.0 ) THEN
  448. NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  449. NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
  450. LWKOPT = MAX( ( NB+1 )*N, LWMIN )
  451. WORK( 1 ) = LWKOPT
  452. RWORK( 1 ) = LRWMIN
  453. IWORK( 1 ) = LIWMIN
  454. *
  455. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  456. INFO = -18
  457. ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  458. INFO = -20
  459. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  460. INFO = -22
  461. END IF
  462. END IF
  463. *
  464. IF( INFO.NE.0 ) THEN
  465. CALL XERBLA( 'ZHEEVR', -INFO )
  466. RETURN
  467. ELSE IF( LQUERY ) THEN
  468. RETURN
  469. END IF
  470. *
  471. * Quick return if possible
  472. *
  473. M = 0
  474. IF( N.EQ.0 ) THEN
  475. WORK( 1 ) = 1
  476. RETURN
  477. END IF
  478. *
  479. IF( N.EQ.1 ) THEN
  480. WORK( 1 ) = 2
  481. IF( ALLEIG .OR. INDEIG ) THEN
  482. M = 1
  483. W( 1 ) = DBLE( A( 1, 1 ) )
  484. ELSE
  485. IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  486. $ THEN
  487. M = 1
  488. W( 1 ) = DBLE( A( 1, 1 ) )
  489. END IF
  490. END IF
  491. IF( WANTZ ) THEN
  492. Z( 1, 1 ) = ONE
  493. ISUPPZ( 1 ) = 1
  494. ISUPPZ( 2 ) = 1
  495. END IF
  496. RETURN
  497. END IF
  498. *
  499. * Get machine constants.
  500. *
  501. SAFMIN = DLAMCH( 'Safe minimum' )
  502. EPS = DLAMCH( 'Precision' )
  503. SMLNUM = SAFMIN / EPS
  504. BIGNUM = ONE / SMLNUM
  505. RMIN = SQRT( SMLNUM )
  506. RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  507. *
  508. * Scale matrix to allowable range, if necessary.
  509. *
  510. ISCALE = 0
  511. ABSTLL = ABSTOL
  512. IF (VALEIG) THEN
  513. VLL = VL
  514. VUU = VU
  515. END IF
  516. ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
  517. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  518. ISCALE = 1
  519. SIGMA = RMIN / ANRM
  520. ELSE IF( ANRM.GT.RMAX ) THEN
  521. ISCALE = 1
  522. SIGMA = RMAX / ANRM
  523. END IF
  524. IF( ISCALE.EQ.1 ) THEN
  525. IF( LOWER ) THEN
  526. DO 10 J = 1, N
  527. CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  528. 10 CONTINUE
  529. ELSE
  530. DO 20 J = 1, N
  531. CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  532. 20 CONTINUE
  533. END IF
  534. IF( ABSTOL.GT.0 )
  535. $ ABSTLL = ABSTOL*SIGMA
  536. IF( VALEIG ) THEN
  537. VLL = VL*SIGMA
  538. VUU = VU*SIGMA
  539. END IF
  540. END IF
  541. * Initialize indices into workspaces. Note: The IWORK indices are
  542. * used only if DSTERF or ZSTEMR fail.
  543. * WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
  544. * elementary reflectors used in ZHETRD.
  545. INDTAU = 1
  546. * INDWK is the starting offset of the remaining complex workspace,
  547. * and LLWORK is the remaining complex workspace size.
  548. INDWK = INDTAU + N
  549. LLWORK = LWORK - INDWK + 1
  550. * RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
  551. * entries.
  552. INDRD = 1
  553. * RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
  554. * tridiagonal matrix from ZHETRD.
  555. INDRE = INDRD + N
  556. * RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
  557. * -written by ZSTEMR (the DSTERF path copies the diagonal to W).
  558. INDRDD = INDRE + N
  559. * RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
  560. * -written while computing the eigenvalues in DSTERF and ZSTEMR.
  561. INDREE = INDRDD + N
  562. * INDRWK is the starting offset of the left-over real workspace, and
  563. * LLRWORK is the remaining workspace size.
  564. INDRWK = INDREE + N
  565. LLRWORK = LRWORK - INDRWK + 1
  566. * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  567. * stores the block indices of each of the M<=N eigenvalues.
  568. INDIBL = 1
  569. * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  570. * stores the starting and finishing indices of each block.
  571. INDISP = INDIBL + N
  572. * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  573. * that corresponding to eigenvectors that fail to converge in
  574. * DSTEIN. This information is discarded; if any fail, the driver
  575. * returns INFO > 0.
  576. INDIFL = INDISP + N
  577. * INDIWO is the offset of the remaining integer workspace.
  578. INDIWO = INDIFL + N
  579. *
  580. * Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  581. *
  582. CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
  583. $ WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
  584. *
  585. * If all eigenvalues are desired
  586. * then call DSTERF or ZSTEMR and ZUNMTR.
  587. *
  588. TEST = .FALSE.
  589. IF( INDEIG ) THEN
  590. IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  591. TEST = .TRUE.
  592. END IF
  593. END IF
  594. IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
  595. IF( .NOT.WANTZ ) THEN
  596. CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
  597. CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
  598. CALL DSTERF( N, W, RWORK( INDREE ), INFO )
  599. ELSE
  600. CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
  601. CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
  602. *
  603. IF (ABSTOL .LE. TWO*N*EPS) THEN
  604. TRYRAC = .TRUE.
  605. ELSE
  606. TRYRAC = .FALSE.
  607. END IF
  608. CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
  609. $ RWORK( INDREE ), VL, VU, IL, IU, M, W,
  610. $ Z, LDZ, N, ISUPPZ, TRYRAC,
  611. $ RWORK( INDRWK ), LLRWORK,
  612. $ IWORK, LIWORK, INFO )
  613. *
  614. * Apply unitary matrix used in reduction to tridiagonal
  615. * form to eigenvectors returned by ZSTEIN.
  616. *
  617. IF( WANTZ .AND. INFO.EQ.0 ) THEN
  618. INDWKN = INDWK
  619. LLWRKN = LWORK - INDWKN + 1
  620. CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
  621. $ WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
  622. $ LLWRKN, IINFO )
  623. END IF
  624. END IF
  625. *
  626. *
  627. IF( INFO.EQ.0 ) THEN
  628. M = N
  629. GO TO 30
  630. END IF
  631. INFO = 0
  632. END IF
  633. *
  634. * Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  635. * Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
  636. *
  637. IF( WANTZ ) THEN
  638. ORDER = 'B'
  639. ELSE
  640. ORDER = 'E'
  641. END IF
  642. CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  643. $ RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
  644. $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  645. $ IWORK( INDIWO ), INFO )
  646. *
  647. IF( WANTZ ) THEN
  648. CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
  649. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  650. $ RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
  651. $ INFO )
  652. *
  653. * Apply unitary matrix used in reduction to tridiagonal
  654. * form to eigenvectors returned by ZSTEIN.
  655. *
  656. INDWKN = INDWK
  657. LLWRKN = LWORK - INDWKN + 1
  658. CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  659. $ LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  660. END IF
  661. *
  662. * If matrix was scaled, then rescale eigenvalues appropriately.
  663. *
  664. 30 CONTINUE
  665. IF( ISCALE.EQ.1 ) THEN
  666. IF( INFO.EQ.0 ) THEN
  667. IMAX = M
  668. ELSE
  669. IMAX = INFO - 1
  670. END IF
  671. CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  672. END IF
  673. *
  674. * If eigenvalues are not in order, then sort them, along with
  675. * eigenvectors.
  676. *
  677. IF( WANTZ ) THEN
  678. DO 50 J = 1, M - 1
  679. I = 0
  680. TMP1 = W( J )
  681. DO 40 JJ = J + 1, M
  682. IF( W( JJ ).LT.TMP1 ) THEN
  683. I = JJ
  684. TMP1 = W( JJ )
  685. END IF
  686. 40 CONTINUE
  687. *
  688. IF( I.NE.0 ) THEN
  689. ITMP1 = IWORK( INDIBL+I-1 )
  690. W( I ) = W( J )
  691. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  692. W( J ) = TMP1
  693. IWORK( INDIBL+J-1 ) = ITMP1
  694. CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  695. END IF
  696. 50 CONTINUE
  697. END IF
  698. *
  699. * Set WORK(1) to optimal workspace size.
  700. *
  701. WORK( 1 ) = LWKOPT
  702. RWORK( 1 ) = LRWMIN
  703. IWORK( 1 ) = LIWMIN
  704. *
  705. RETURN
  706. *
  707. * End of ZHEEVR
  708. *
  709. END