You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csyequb.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348
  1. *> \brief \b CSYEQUB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CSYEQUB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csyequb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csyequb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csyequb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, N
  25. * REAL AMAX, SCOND
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * ), WORK( * )
  30. * REAL S( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CSYEQUB computes row and column scalings intended to equilibrate a
  40. *> symmetric matrix A and reduce its condition number
  41. *> (with respect to the two-norm). S contains the scale factors,
  42. *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
  43. *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
  44. *> choice of S puts the condition number of B within a factor N of the
  45. *> smallest possible condition number over all possible diagonal
  46. *> scalings.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] UPLO
  53. *> \verbatim
  54. *> UPLO is CHARACTER*1
  55. *> Specifies whether the details of the factorization are stored
  56. *> as an upper or lower triangular matrix.
  57. *> = 'U': Upper triangular, form is A = U*D*U**T;
  58. *> = 'L': Lower triangular, form is A = L*D*L**T.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix A. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] A
  68. *> \verbatim
  69. *> A is COMPLEX array, dimension (LDA,N)
  70. *> The N-by-N symmetric matrix whose scaling
  71. *> factors are to be computed. Only the diagonal elements of A
  72. *> are referenced.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[out] S
  82. *> \verbatim
  83. *> S is REAL array, dimension (N)
  84. *> If INFO = 0, S contains the scale factors for A.
  85. *> \endverbatim
  86. *>
  87. *> \param[out] SCOND
  88. *> \verbatim
  89. *> SCOND is REAL
  90. *> If INFO = 0, S contains the ratio of the smallest S(i) to
  91. *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
  92. *> large nor too small, it is not worth scaling by S.
  93. *> \endverbatim
  94. *>
  95. *> \param[out] AMAX
  96. *> \verbatim
  97. *> AMAX is REAL
  98. *> Absolute value of largest matrix element. If AMAX is very
  99. *> close to overflow or very close to underflow, the matrix
  100. *> should be scaled.
  101. *> \endverbatim
  102. *>
  103. *> \param[out] WORK
  104. *> \verbatim
  105. *> WORK is COMPLEX array, dimension (3*N)
  106. *> \endverbatim
  107. *>
  108. *> \param[out] INFO
  109. *> \verbatim
  110. *> INFO is INTEGER
  111. *> = 0: successful exit
  112. *> < 0: if INFO = -i, the i-th argument had an illegal value
  113. *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \date November 2011
  125. *
  126. *> \ingroup complexSYcomputational
  127. *
  128. *> \par References:
  129. * ================
  130. *>
  131. *> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
  132. *> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
  133. *> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
  134. *> Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
  135. *>
  136. * =====================================================================
  137. SUBROUTINE CSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  138. *
  139. * -- LAPACK computational routine (version 3.4.0) --
  140. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  141. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142. * November 2011
  143. *
  144. * .. Scalar Arguments ..
  145. INTEGER INFO, LDA, N
  146. REAL AMAX, SCOND
  147. CHARACTER UPLO
  148. * ..
  149. * .. Array Arguments ..
  150. COMPLEX A( LDA, * ), WORK( * )
  151. REAL S( * )
  152. * ..
  153. *
  154. * =====================================================================
  155. *
  156. * .. Parameters ..
  157. REAL ONE, ZERO
  158. PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
  159. INTEGER MAX_ITER
  160. PARAMETER ( MAX_ITER = 100 )
  161. * ..
  162. * .. Local Scalars ..
  163. INTEGER I, J, ITER
  164. REAL AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
  165. $ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
  166. LOGICAL UP
  167. COMPLEX ZDUM
  168. * ..
  169. * .. External Functions ..
  170. REAL SLAMCH
  171. LOGICAL LSAME
  172. EXTERNAL LSAME, SLAMCH
  173. * ..
  174. * .. External Subroutines ..
  175. EXTERNAL CLASSQ
  176. * ..
  177. * .. Intrinsic Functions ..
  178. INTRINSIC ABS, AIMAG, INT, LOG, MAX, MIN, REAL, SQRT
  179. * ..
  180. * .. Statement Functions ..
  181. REAL CABS1
  182. * ..
  183. * Statement Function Definitions
  184. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  185. * ..
  186. * .. Executable Statements ..
  187. *
  188. * Test the input parameters.
  189. *
  190. INFO = 0
  191. IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
  192. INFO = -1
  193. ELSE IF ( N .LT. 0 ) THEN
  194. INFO = -2
  195. ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
  196. INFO = -4
  197. END IF
  198. IF ( INFO .NE. 0 ) THEN
  199. CALL XERBLA( 'CSYEQUB', -INFO )
  200. RETURN
  201. END IF
  202. UP = LSAME( UPLO, 'U' )
  203. AMAX = ZERO
  204. *
  205. * Quick return if possible.
  206. *
  207. IF ( N .EQ. 0 ) THEN
  208. SCOND = ONE
  209. RETURN
  210. END IF
  211. DO I = 1, N
  212. S( I ) = ZERO
  213. END DO
  214. AMAX = ZERO
  215. IF ( UP ) THEN
  216. DO J = 1, N
  217. DO I = 1, J-1
  218. S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
  219. S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
  220. AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
  221. END DO
  222. S( J ) = MAX( S( J ), CABS1( A( J, J) ) )
  223. AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
  224. END DO
  225. ELSE
  226. DO J = 1, N
  227. S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
  228. AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
  229. DO I = J+1, N
  230. S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
  231. S( J ) = MAX( S( J ), CABS1 (A( I, J ) ) )
  232. AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
  233. END DO
  234. END DO
  235. END IF
  236. DO J = 1, N
  237. S( J ) = 1.0 / S( J )
  238. END DO
  239. TOL = ONE / SQRT( 2.0E0 * N )
  240. DO ITER = 1, MAX_ITER
  241. SCALE = 0.0
  242. SUMSQ = 0.0
  243. * beta = |A|s
  244. DO I = 1, N
  245. WORK( I ) = ZERO
  246. END DO
  247. IF ( UP ) THEN
  248. DO J = 1, N
  249. DO I = 1, J-1
  250. T = CABS1( A( I, J ) )
  251. WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
  252. WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
  253. END DO
  254. WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
  255. END DO
  256. ELSE
  257. DO J = 1, N
  258. WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
  259. DO I = J+1, N
  260. T = CABS1( A( I, J ) )
  261. WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
  262. WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
  263. END DO
  264. END DO
  265. END IF
  266. * avg = s^T beta / n
  267. AVG = 0.0
  268. DO I = 1, N
  269. AVG = AVG + S( I )*WORK( I )
  270. END DO
  271. AVG = AVG / N
  272. STD = 0.0
  273. DO I = N+1, 2*N
  274. WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
  275. END DO
  276. CALL CLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
  277. STD = SCALE * SQRT( SUMSQ / N )
  278. IF ( STD .LT. TOL * AVG ) GOTO 999
  279. DO I = 1, N
  280. T = CABS1( A( I, I ) )
  281. SI = S( I )
  282. C2 = ( N-1 ) * T
  283. C1 = ( N-2 ) * ( WORK( I ) - T*SI )
  284. C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
  285. D = C1*C1 - 4*C0*C2
  286. IF ( D .LE. 0 ) THEN
  287. INFO = -1
  288. RETURN
  289. END IF
  290. SI = -2*C0 / ( C1 + SQRT( D ) )
  291. D = SI - S( I )
  292. U = ZERO
  293. IF ( UP ) THEN
  294. DO J = 1, I
  295. T = CABS1( A( J, I ) )
  296. U = U + S( J )*T
  297. WORK( J ) = WORK( J ) + D*T
  298. END DO
  299. DO J = I+1,N
  300. T = CABS1( A( I, J ) )
  301. U = U + S( J )*T
  302. WORK( J ) = WORK( J ) + D*T
  303. END DO
  304. ELSE
  305. DO J = 1, I
  306. T = CABS1( A( I, J ) )
  307. U = U + S( J )*T
  308. WORK( J ) = WORK( J ) + D*T
  309. END DO
  310. DO J = I+1,N
  311. T = CABS1( A( J, I ) )
  312. U = U + S( J )*T
  313. WORK( J ) = WORK( J ) + D*T
  314. END DO
  315. END IF
  316. AVG = AVG + ( U + WORK( I ) ) * D / N
  317. S( I ) = SI
  318. END DO
  319. END DO
  320. 999 CONTINUE
  321. SMLNUM = SLAMCH( 'SAFEMIN' )
  322. BIGNUM = ONE / SMLNUM
  323. SMIN = BIGNUM
  324. SMAX = ZERO
  325. T = ONE / SQRT( AVG )
  326. BASE = SLAMCH( 'B' )
  327. U = ONE / LOG( BASE )
  328. DO I = 1, N
  329. S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
  330. SMIN = MIN( SMIN, S( I ) )
  331. SMAX = MAX( SMAX, S( I ) )
  332. END DO
  333. SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  334. *
  335. END