You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctpsvf.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. SUBROUTINE CTPSVF( UPLO, TRANS, DIAG, N, AP, X, INCX )
  2. * .. Scalar Arguments ..
  3. INTEGER INCX, N
  4. CHARACTER*1 DIAG, TRANS, UPLO
  5. * .. Array Arguments ..
  6. COMPLEX AP( * ), X( * )
  7. * ..
  8. *
  9. * Purpose
  10. * =======
  11. *
  12. * CTPSV solves one of the systems of equations
  13. *
  14. * A*x = b, or A'*x = b, or conjg( A' )*x = b,
  15. *
  16. * where b and x are n element vectors and A is an n by n unit, or
  17. * non-unit, upper or lower triangular matrix, supplied in packed form.
  18. *
  19. * No test for singularity or near-singularity is included in this
  20. * routine. Such tests must be performed before calling this routine.
  21. *
  22. * Parameters
  23. * ==========
  24. *
  25. * UPLO - CHARACTER*1.
  26. * On entry, UPLO specifies whether the matrix is an upper or
  27. * lower triangular matrix as follows:
  28. *
  29. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  30. *
  31. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  32. *
  33. * Unchanged on exit.
  34. *
  35. * TRANS - CHARACTER*1.
  36. * On entry, TRANS specifies the equations to be solved as
  37. * follows:
  38. *
  39. * TRANS = 'N' or 'n' A*x = b.
  40. *
  41. * TRANS = 'T' or 't' A'*x = b.
  42. *
  43. * TRANS = 'C' or 'c' conjg( A' )*x = b.
  44. *
  45. * Unchanged on exit.
  46. *
  47. * DIAG - CHARACTER*1.
  48. * On entry, DIAG specifies whether or not A is unit
  49. * triangular as follows:
  50. *
  51. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  52. *
  53. * DIAG = 'N' or 'n' A is not assumed to be unit
  54. * triangular.
  55. *
  56. * Unchanged on exit.
  57. *
  58. * N - INTEGER.
  59. * On entry, N specifies the order of the matrix A.
  60. * N must be at least zero.
  61. * Unchanged on exit.
  62. *
  63. * AP - COMPLEX array of DIMENSION at least
  64. * ( ( n*( n + 1 ) )/2 ).
  65. * Before entry with UPLO = 'U' or 'u', the array AP must
  66. * contain the upper triangular matrix packed sequentially,
  67. * column by column, so that AP( 1 ) contains a( 1, 1 ),
  68. * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
  69. * respectively, and so on.
  70. * Before entry with UPLO = 'L' or 'l', the array AP must
  71. * contain the lower triangular matrix packed sequentially,
  72. * column by column, so that AP( 1 ) contains a( 1, 1 ),
  73. * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
  74. * respectively, and so on.
  75. * Note that when DIAG = 'U' or 'u', the diagonal elements of
  76. * A are not referenced, but are assumed to be unity.
  77. * Unchanged on exit.
  78. *
  79. * X - COMPLEX array of dimension at least
  80. * ( 1 + ( n - 1 )*abs( INCX ) ).
  81. * Before entry, the incremented array X must contain the n
  82. * element right-hand side vector b. On exit, X is overwritten
  83. * with the solution vector x.
  84. *
  85. * INCX - INTEGER.
  86. * On entry, INCX specifies the increment for the elements of
  87. * X. INCX must not be zero.
  88. * Unchanged on exit.
  89. *
  90. *
  91. * Level 2 Blas routine.
  92. *
  93. * -- Written on 22-October-1986.
  94. * Jack Dongarra, Argonne National Lab.
  95. * Jeremy Du Croz, Nag Central Office.
  96. * Sven Hammarling, Nag Central Office.
  97. * Richard Hanson, Sandia National Labs.
  98. *
  99. *
  100. * .. Parameters ..
  101. COMPLEX ZERO
  102. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  103. * .. Local Scalars ..
  104. COMPLEX TEMP
  105. INTEGER I, INFO, IX, J, JX, K, KK, KX
  106. LOGICAL NOCONJ, NOUNIT
  107. * .. External Functions ..
  108. LOGICAL LSAME
  109. EXTERNAL LSAME
  110. * .. External Subroutines ..
  111. EXTERNAL XERBLA
  112. * .. Intrinsic Functions ..
  113. INTRINSIC CONJG
  114. * ..
  115. * .. Executable Statements ..
  116. *
  117. * Test the input parameters.
  118. *
  119. INFO = 0
  120. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  121. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  122. INFO = 1
  123. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  124. $ .NOT.LSAME( TRANS, 'T' ).AND.
  125. $ .NOT.LSAME( TRANS, 'R' ).AND.
  126. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  127. INFO = 2
  128. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  129. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  130. INFO = 3
  131. ELSE IF( N.LT.0 )THEN
  132. INFO = 4
  133. ELSE IF( INCX.EQ.0 )THEN
  134. INFO = 7
  135. END IF
  136. IF( INFO.NE.0 )THEN
  137. CALL XERBLA( 'CTPSV ', INFO )
  138. RETURN
  139. END IF
  140. *
  141. * Quick return if possible.
  142. *
  143. IF( N.EQ.0 )
  144. $ RETURN
  145. *
  146. NOCONJ = LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
  147. NOUNIT = LSAME( DIAG , 'N' )
  148. *
  149. * Set up the start point in X if the increment is not unity. This
  150. * will be ( N - 1 )*INCX too small for descending loops.
  151. *
  152. IF( INCX.LE.0 )THEN
  153. KX = 1 - ( N - 1 )*INCX
  154. ELSE IF( INCX.NE.1 )THEN
  155. KX = 1
  156. END IF
  157. *
  158. * Start the operations. In this version the elements of AP are
  159. * accessed sequentially with one pass through AP.
  160. *
  161. IF( LSAME( TRANS, 'N' ) .OR.LSAME( TRANS, 'R' ))THEN
  162. *
  163. * Form x := inv( A )*x.
  164. *
  165. IF( LSAME( UPLO, 'U' ) )THEN
  166. KK = ( N*( N + 1 ) )/2
  167. IF( INCX.EQ.1 )THEN
  168. DO 20, J = N, 1, -1
  169. IF( X( J ).NE.ZERO )THEN
  170. IF( NOCONJ )THEN
  171. IF( NOUNIT )
  172. $ X( J ) = X( J )/AP( KK )
  173. ELSE
  174. IF( NOUNIT )
  175. $ X( J ) = X( J )/CONJG(AP( KK ))
  176. END IF
  177. TEMP = X( J )
  178. K = KK - 1
  179. DO 10, I = J - 1, 1, -1
  180. IF( NOCONJ )THEN
  181. X( I ) = X( I ) - TEMP*AP( K )
  182. ELSE
  183. X( I ) = X( I ) - TEMP*CONJG(AP( K ))
  184. END IF
  185. K = K - 1
  186. 10 CONTINUE
  187. END IF
  188. KK = KK - J
  189. 20 CONTINUE
  190. ELSE
  191. JX = KX + ( N - 1 )*INCX
  192. DO 40, J = N, 1, -1
  193. IF( X( JX ).NE.ZERO )THEN
  194. IF( NOCONJ )THEN
  195. IF( NOUNIT )
  196. $ X( JX ) = X( JX )/AP( KK )
  197. ELSE
  198. IF( NOUNIT )
  199. $ X( JX ) = X( JX )/CONJG(AP( KK ))
  200. END IF
  201. TEMP = X( JX )
  202. IX = JX
  203. DO 30, K = KK - 1, KK - J + 1, -1
  204. IX = IX - INCX
  205. IF( NOCONJ )THEN
  206. X( IX ) = X( IX ) - TEMP*AP( K )
  207. ELSE
  208. X( IX ) = X( IX ) - TEMP*CONJG(AP( K ))
  209. END IF
  210. 30 CONTINUE
  211. END IF
  212. JX = JX - INCX
  213. KK = KK - J
  214. 40 CONTINUE
  215. END IF
  216. ELSE
  217. KK = 1
  218. IF( INCX.EQ.1 )THEN
  219. DO 60, J = 1, N
  220. IF( X( J ).NE.ZERO )THEN
  221. IF( NOCONJ )THEN
  222. IF( NOUNIT )
  223. $ X( J ) = X( J )/AP( KK )
  224. ELSE
  225. IF( NOUNIT )
  226. $ X( J ) = X( J )/CONJG(AP( KK ))
  227. END IF
  228. TEMP = X( J )
  229. K = KK + 1
  230. DO 50, I = J + 1, N
  231. IF( NOCONJ )THEN
  232. X( I ) = X( I ) - TEMP*AP( K )
  233. ELSE
  234. X( I ) = X( I ) - TEMP*CONJG(AP( K ))
  235. END IF
  236. K = K + 1
  237. 50 CONTINUE
  238. END IF
  239. KK = KK + ( N - J + 1 )
  240. 60 CONTINUE
  241. ELSE
  242. JX = KX
  243. DO 80, J = 1, N
  244. IF( X( JX ).NE.ZERO )THEN
  245. IF( NOCONJ )THEN
  246. IF( NOUNIT )
  247. $ X( JX ) = X( JX )/AP( KK )
  248. ELSE
  249. IF( NOUNIT )
  250. $ X( JX ) = X( JX )/CONJG(AP( KK ))
  251. END IF
  252. TEMP = X( JX )
  253. IX = JX
  254. DO 70, K = KK + 1, KK + N - J
  255. IX = IX + INCX
  256. IF( NOCONJ )THEN
  257. X( IX ) = X( IX ) - TEMP*AP( K )
  258. ELSE
  259. X( IX ) = X( IX ) - TEMP*CONJG(AP( K ))
  260. END IF
  261. 70 CONTINUE
  262. END IF
  263. JX = JX + INCX
  264. KK = KK + ( N - J + 1 )
  265. 80 CONTINUE
  266. END IF
  267. END IF
  268. ELSE
  269. *
  270. * Form x := inv( A' )*x or x := inv( conjg( A' ) )*x.
  271. *
  272. IF( LSAME( UPLO, 'U' ) )THEN
  273. KK = 1
  274. IF( INCX.EQ.1 )THEN
  275. DO 110, J = 1, N
  276. TEMP = X( J )
  277. K = KK
  278. IF( NOCONJ )THEN
  279. DO 90, I = 1, J - 1
  280. TEMP = TEMP - AP( K )*X( I )
  281. K = K + 1
  282. 90 CONTINUE
  283. IF( NOUNIT )
  284. $ TEMP = TEMP/AP( KK + J - 1 )
  285. ELSE
  286. DO 100, I = 1, J - 1
  287. TEMP = TEMP - CONJG( AP( K ) )*X( I )
  288. K = K + 1
  289. 100 CONTINUE
  290. IF( NOUNIT )
  291. $ TEMP = TEMP/CONJG( AP( KK + J - 1 ) )
  292. END IF
  293. X( J ) = TEMP
  294. KK = KK + J
  295. 110 CONTINUE
  296. ELSE
  297. JX = KX
  298. DO 140, J = 1, N
  299. TEMP = X( JX )
  300. IX = KX
  301. IF( NOCONJ )THEN
  302. DO 120, K = KK, KK + J - 2
  303. TEMP = TEMP - AP( K )*X( IX )
  304. IX = IX + INCX
  305. 120 CONTINUE
  306. IF( NOUNIT )
  307. $ TEMP = TEMP/AP( KK + J - 1 )
  308. ELSE
  309. DO 130, K = KK, KK + J - 2
  310. TEMP = TEMP - CONJG( AP( K ) )*X( IX )
  311. IX = IX + INCX
  312. 130 CONTINUE
  313. IF( NOUNIT )
  314. $ TEMP = TEMP/CONJG( AP( KK + J - 1 ) )
  315. END IF
  316. X( JX ) = TEMP
  317. JX = JX + INCX
  318. KK = KK + J
  319. 140 CONTINUE
  320. END IF
  321. ELSE
  322. KK = ( N*( N + 1 ) )/2
  323. IF( INCX.EQ.1 )THEN
  324. DO 170, J = N, 1, -1
  325. TEMP = X( J )
  326. K = KK
  327. IF( NOCONJ )THEN
  328. DO 150, I = N, J + 1, -1
  329. TEMP = TEMP - AP( K )*X( I )
  330. K = K - 1
  331. 150 CONTINUE
  332. IF( NOUNIT )
  333. $ TEMP = TEMP/AP( KK - N + J )
  334. ELSE
  335. DO 160, I = N, J + 1, -1
  336. TEMP = TEMP - CONJG( AP( K ) )*X( I )
  337. K = K - 1
  338. 160 CONTINUE
  339. IF( NOUNIT )
  340. $ TEMP = TEMP/CONJG( AP( KK - N + J ) )
  341. END IF
  342. X( J ) = TEMP
  343. KK = KK - ( N - J + 1 )
  344. 170 CONTINUE
  345. ELSE
  346. KX = KX + ( N - 1 )*INCX
  347. JX = KX
  348. DO 200, J = N, 1, -1
  349. TEMP = X( JX )
  350. IX = KX
  351. IF( NOCONJ )THEN
  352. DO 180, K = KK, KK - ( N - ( J + 1 ) ), -1
  353. TEMP = TEMP - AP( K )*X( IX )
  354. IX = IX - INCX
  355. 180 CONTINUE
  356. IF( NOUNIT )
  357. $ TEMP = TEMP/AP( KK - N + J )
  358. ELSE
  359. DO 190, K = KK, KK - ( N - ( J + 1 ) ), -1
  360. TEMP = TEMP - CONJG( AP( K ) )*X( IX )
  361. IX = IX - INCX
  362. 190 CONTINUE
  363. IF( NOUNIT )
  364. $ TEMP = TEMP/CONJG( AP( KK - N + J ) )
  365. END IF
  366. X( JX ) = TEMP
  367. JX = JX - INCX
  368. KK = KK - ( N - J + 1 )
  369. 200 CONTINUE
  370. END IF
  371. END IF
  372. END IF
  373. *
  374. RETURN
  375. *
  376. * End of CTPSV .
  377. *
  378. END

OpenBLAS is an optimized BLAS library based on GotoBLAS2 1.13 BSD version.