You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csymm3mf.f 9.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. SUBROUTINE CSYMM3MF( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
  2. $ BETA, C, LDC )
  3. * .. Scalar Arguments ..
  4. CHARACTER*1 SIDE, UPLO
  5. INTEGER M, N, LDA, LDB, LDC
  6. COMPLEX ALPHA, BETA
  7. * .. Array Arguments ..
  8. COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * CSYMM performs one of the matrix-matrix operations
  15. *
  16. * C := alpha*A*B + beta*C,
  17. *
  18. * or
  19. *
  20. * C := alpha*B*A + beta*C,
  21. *
  22. * where alpha and beta are scalars, A is a symmetric matrix and B and
  23. * C are m by n matrices.
  24. *
  25. * Parameters
  26. * ==========
  27. *
  28. * SIDE - CHARACTER*1.
  29. * On entry, SIDE specifies whether the symmetric matrix A
  30. * appears on the left or right in the operation as follows:
  31. *
  32. * SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
  33. *
  34. * SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
  35. *
  36. * Unchanged on exit.
  37. *
  38. * UPLO - CHARACTER*1.
  39. * On entry, UPLO specifies whether the upper or lower
  40. * triangular part of the symmetric matrix A is to be
  41. * referenced as follows:
  42. *
  43. * UPLO = 'U' or 'u' Only the upper triangular part of the
  44. * symmetric matrix is to be referenced.
  45. *
  46. * UPLO = 'L' or 'l' Only the lower triangular part of the
  47. * symmetric matrix is to be referenced.
  48. *
  49. * Unchanged on exit.
  50. *
  51. * M - INTEGER.
  52. * On entry, M specifies the number of rows of the matrix C.
  53. * M must be at least zero.
  54. * Unchanged on exit.
  55. *
  56. * N - INTEGER.
  57. * On entry, N specifies the number of columns of the matrix C.
  58. * N must be at least zero.
  59. * Unchanged on exit.
  60. *
  61. * ALPHA - COMPLEX .
  62. * On entry, ALPHA specifies the scalar alpha.
  63. * Unchanged on exit.
  64. *
  65. * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
  66. * m when SIDE = 'L' or 'l' and is n otherwise.
  67. * Before entry with SIDE = 'L' or 'l', the m by m part of
  68. * the array A must contain the symmetric matrix, such that
  69. * when UPLO = 'U' or 'u', the leading m by m upper triangular
  70. * part of the array A must contain the upper triangular part
  71. * of the symmetric matrix and the strictly lower triangular
  72. * part of A is not referenced, and when UPLO = 'L' or 'l',
  73. * the leading m by m lower triangular part of the array A
  74. * must contain the lower triangular part of the symmetric
  75. * matrix and the strictly upper triangular part of A is not
  76. * referenced.
  77. * Before entry with SIDE = 'R' or 'r', the n by n part of
  78. * the array A must contain the symmetric matrix, such that
  79. * when UPLO = 'U' or 'u', the leading n by n upper triangular
  80. * part of the array A must contain the upper triangular part
  81. * of the symmetric matrix and the strictly lower triangular
  82. * part of A is not referenced, and when UPLO = 'L' or 'l',
  83. * the leading n by n lower triangular part of the array A
  84. * must contain the lower triangular part of the symmetric
  85. * matrix and the strictly upper triangular part of A is not
  86. * referenced.
  87. * Unchanged on exit.
  88. *
  89. * LDA - INTEGER.
  90. * On entry, LDA specifies the first dimension of A as declared
  91. * in the calling (sub) program. When SIDE = 'L' or 'l' then
  92. * LDA must be at least max( 1, m ), otherwise LDA must be at
  93. * least max( 1, n ).
  94. * Unchanged on exit.
  95. *
  96. * B - COMPLEX array of DIMENSION ( LDB, n ).
  97. * Before entry, the leading m by n part of the array B must
  98. * contain the matrix B.
  99. * Unchanged on exit.
  100. *
  101. * LDB - INTEGER.
  102. * On entry, LDB specifies the first dimension of B as declared
  103. * in the calling (sub) program. LDB must be at least
  104. * max( 1, m ).
  105. * Unchanged on exit.
  106. *
  107. * BETA - COMPLEX .
  108. * On entry, BETA specifies the scalar beta. When BETA is
  109. * supplied as zero then C need not be set on input.
  110. * Unchanged on exit.
  111. *
  112. * C - COMPLEX array of DIMENSION ( LDC, n ).
  113. * Before entry, the leading m by n part of the array C must
  114. * contain the matrix C, except when beta is zero, in which
  115. * case C need not be set on entry.
  116. * On exit, the array C is overwritten by the m by n updated
  117. * matrix.
  118. *
  119. * LDC - INTEGER.
  120. * On entry, LDC specifies the first dimension of C as declared
  121. * in the calling (sub) program. LDC must be at least
  122. * max( 1, m ).
  123. * Unchanged on exit.
  124. *
  125. *
  126. * Level 3 Blas routine.
  127. *
  128. * -- Written on 8-February-1989.
  129. * Jack Dongarra, Argonne National Laboratory.
  130. * Iain Duff, AERE Harwell.
  131. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  132. * Sven Hammarling, Numerical Algorithms Group Ltd.
  133. *
  134. *
  135. * .. External Functions ..
  136. LOGICAL LSAME
  137. EXTERNAL LSAME
  138. * .. External Subroutines ..
  139. EXTERNAL XERBLA
  140. * .. Intrinsic Functions ..
  141. INTRINSIC MAX
  142. * .. Local Scalars ..
  143. LOGICAL UPPER
  144. INTEGER I, INFO, J, K, NROWA
  145. COMPLEX TEMP1, TEMP2
  146. * .. Parameters ..
  147. COMPLEX ONE
  148. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  149. COMPLEX ZERO
  150. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  151. * ..
  152. * .. Executable Statements ..
  153. *
  154. * Set NROWA as the number of rows of A.
  155. *
  156. IF( LSAME( SIDE, 'L' ) )THEN
  157. NROWA = M
  158. ELSE
  159. NROWA = N
  160. END IF
  161. UPPER = LSAME( UPLO, 'U' )
  162. *
  163. * Test the input parameters.
  164. *
  165. INFO = 0
  166. IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND.
  167. $ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN
  168. INFO = 1
  169. ELSE IF( ( .NOT.UPPER ).AND.
  170. $ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN
  171. INFO = 2
  172. ELSE IF( M .LT.0 )THEN
  173. INFO = 3
  174. ELSE IF( N .LT.0 )THEN
  175. INFO = 4
  176. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  177. INFO = 7
  178. ELSE IF( LDB.LT.MAX( 1, M ) )THEN
  179. INFO = 9
  180. ELSE IF( LDC.LT.MAX( 1, M ) )THEN
  181. INFO = 12
  182. END IF
  183. IF( INFO.NE.0 )THEN
  184. CALL XERBLA( 'CSYMM ', INFO )
  185. RETURN
  186. END IF
  187. *
  188. * Quick return if possible.
  189. *
  190. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  191. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  192. $ RETURN
  193. *
  194. * And when alpha.eq.zero.
  195. *
  196. IF( ALPHA.EQ.ZERO )THEN
  197. IF( BETA.EQ.ZERO )THEN
  198. DO 20, J = 1, N
  199. DO 10, I = 1, M
  200. C( I, J ) = ZERO
  201. 10 CONTINUE
  202. 20 CONTINUE
  203. ELSE
  204. DO 40, J = 1, N
  205. DO 30, I = 1, M
  206. C( I, J ) = BETA*C( I, J )
  207. 30 CONTINUE
  208. 40 CONTINUE
  209. END IF
  210. RETURN
  211. END IF
  212. *
  213. * Start the operations.
  214. *
  215. IF( LSAME( SIDE, 'L' ) )THEN
  216. *
  217. * Form C := alpha*A*B + beta*C.
  218. *
  219. IF( UPPER )THEN
  220. DO 70, J = 1, N
  221. DO 60, I = 1, M
  222. TEMP1 = ALPHA*B( I, J )
  223. TEMP2 = ZERO
  224. DO 50, K = 1, I - 1
  225. C( K, J ) = C( K, J ) + TEMP1 *A( K, I )
  226. TEMP2 = TEMP2 + B( K, J )*A( K, I )
  227. 50 CONTINUE
  228. IF( BETA.EQ.ZERO )THEN
  229. C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
  230. ELSE
  231. C( I, J ) = BETA *C( I, J ) +
  232. $ TEMP1*A( I, I ) + ALPHA*TEMP2
  233. END IF
  234. 60 CONTINUE
  235. 70 CONTINUE
  236. ELSE
  237. DO 100, J = 1, N
  238. DO 90, I = M, 1, -1
  239. TEMP1 = ALPHA*B( I, J )
  240. TEMP2 = ZERO
  241. DO 80, K = I + 1, M
  242. C( K, J ) = C( K, J ) + TEMP1 *A( K, I )
  243. TEMP2 = TEMP2 + B( K, J )*A( K, I )
  244. 80 CONTINUE
  245. IF( BETA.EQ.ZERO )THEN
  246. C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
  247. ELSE
  248. C( I, J ) = BETA *C( I, J ) +
  249. $ TEMP1*A( I, I ) + ALPHA*TEMP2
  250. END IF
  251. 90 CONTINUE
  252. 100 CONTINUE
  253. END IF
  254. ELSE
  255. *
  256. * Form C := alpha*B*A + beta*C.
  257. *
  258. DO 170, J = 1, N
  259. TEMP1 = ALPHA*A( J, J )
  260. IF( BETA.EQ.ZERO )THEN
  261. DO 110, I = 1, M
  262. C( I, J ) = TEMP1*B( I, J )
  263. 110 CONTINUE
  264. ELSE
  265. DO 120, I = 1, M
  266. C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
  267. 120 CONTINUE
  268. END IF
  269. DO 140, K = 1, J - 1
  270. IF( UPPER )THEN
  271. TEMP1 = ALPHA*A( K, J )
  272. ELSE
  273. TEMP1 = ALPHA*A( J, K )
  274. END IF
  275. DO 130, I = 1, M
  276. C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  277. 130 CONTINUE
  278. 140 CONTINUE
  279. DO 160, K = J + 1, N
  280. IF( UPPER )THEN
  281. TEMP1 = ALPHA*A( J, K )
  282. ELSE
  283. TEMP1 = ALPHA*A( K, J )
  284. END IF
  285. DO 150, I = 1, M
  286. C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  287. 150 CONTINUE
  288. 160 CONTINUE
  289. 170 CONTINUE
  290. END IF
  291. *
  292. RETURN
  293. *
  294. * End of CSYMM .
  295. *
  296. END

OpenBLAS is an optimized BLAS library based on GotoBLAS2 1.13 BSD version.