You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrsen.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. *> \brief \b DTRSEN
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DTRSEN + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
  22. * M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER COMPQ, JOB
  26. * INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
  27. * DOUBLE PRECISION S, SEP
  28. * ..
  29. * .. Array Arguments ..
  30. * LOGICAL SELECT( * )
  31. * INTEGER IWORK( * )
  32. * DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
  33. * $ WR( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> DTRSEN reorders the real Schur factorization of a real matrix
  43. *> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
  44. *> the leading diagonal blocks of the upper quasi-triangular matrix T,
  45. *> and the leading columns of Q form an orthonormal basis of the
  46. *> corresponding right invariant subspace.
  47. *>
  48. *> Optionally the routine computes the reciprocal condition numbers of
  49. *> the cluster of eigenvalues and/or the invariant subspace.
  50. *>
  51. *> T must be in Schur canonical form (as returned by DHSEQR), that is,
  52. *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
  53. *> 2-by-2 diagonal block has its diagonal elements equal and its
  54. *> off-diagonal elements of opposite sign.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] JOB
  61. *> \verbatim
  62. *> JOB is CHARACTER*1
  63. *> Specifies whether condition numbers are required for the
  64. *> cluster of eigenvalues (S) or the invariant subspace (SEP):
  65. *> = 'N': none;
  66. *> = 'E': for eigenvalues only (S);
  67. *> = 'V': for invariant subspace only (SEP);
  68. *> = 'B': for both eigenvalues and invariant subspace (S and
  69. *> SEP).
  70. *> \endverbatim
  71. *>
  72. *> \param[in] COMPQ
  73. *> \verbatim
  74. *> COMPQ is CHARACTER*1
  75. *> = 'V': update the matrix Q of Schur vectors;
  76. *> = 'N': do not update Q.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] SELECT
  80. *> \verbatim
  81. *> SELECT is LOGICAL array, dimension (N)
  82. *> SELECT specifies the eigenvalues in the selected cluster. To
  83. *> select a real eigenvalue w(j), SELECT(j) must be set to
  84. *> .TRUE.. To select a complex conjugate pair of eigenvalues
  85. *> w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
  86. *> either SELECT(j) or SELECT(j+1) or both must be set to
  87. *> .TRUE.; a complex conjugate pair of eigenvalues must be
  88. *> either both included in the cluster or both excluded.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] N
  92. *> \verbatim
  93. *> N is INTEGER
  94. *> The order of the matrix T. N >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in,out] T
  98. *> \verbatim
  99. *> T is DOUBLE PRECISION array, dimension (LDT,N)
  100. *> On entry, the upper quasi-triangular matrix T, in Schur
  101. *> canonical form.
  102. *> On exit, T is overwritten by the reordered matrix T, again in
  103. *> Schur canonical form, with the selected eigenvalues in the
  104. *> leading diagonal blocks.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDT
  108. *> \verbatim
  109. *> LDT is INTEGER
  110. *> The leading dimension of the array T. LDT >= max(1,N).
  111. *> \endverbatim
  112. *>
  113. *> \param[in,out] Q
  114. *> \verbatim
  115. *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
  116. *> On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
  117. *> On exit, if COMPQ = 'V', Q has been postmultiplied by the
  118. *> orthogonal transformation matrix which reorders T; the
  119. *> leading M columns of Q form an orthonormal basis for the
  120. *> specified invariant subspace.
  121. *> If COMPQ = 'N', Q is not referenced.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDQ
  125. *> \verbatim
  126. *> LDQ is INTEGER
  127. *> The leading dimension of the array Q.
  128. *> LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
  129. *> \endverbatim
  130. *>
  131. *> \param[out] WR
  132. *> \verbatim
  133. *> WR is DOUBLE PRECISION array, dimension (N)
  134. *> \endverbatim
  135. *> \param[out] WI
  136. *> \verbatim
  137. *> WI is DOUBLE PRECISION array, dimension (N)
  138. *>
  139. *> The real and imaginary parts, respectively, of the reordered
  140. *> eigenvalues of T. The eigenvalues are stored in the same
  141. *> order as on the diagonal of T, with WR(i) = T(i,i) and, if
  142. *> T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
  143. *> WI(i+1) = -WI(i). Note that if a complex eigenvalue is
  144. *> sufficiently ill-conditioned, then its value may differ
  145. *> significantly from its value before reordering.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] M
  149. *> \verbatim
  150. *> M is INTEGER
  151. *> The dimension of the specified invariant subspace.
  152. *> 0 < = M <= N.
  153. *> \endverbatim
  154. *>
  155. *> \param[out] S
  156. *> \verbatim
  157. *> S is DOUBLE PRECISION
  158. *> If JOB = 'E' or 'B', S is a lower bound on the reciprocal
  159. *> condition number for the selected cluster of eigenvalues.
  160. *> S cannot underestimate the true reciprocal condition number
  161. *> by more than a factor of sqrt(N). If M = 0 or N, S = 1.
  162. *> If JOB = 'N' or 'V', S is not referenced.
  163. *> \endverbatim
  164. *>
  165. *> \param[out] SEP
  166. *> \verbatim
  167. *> SEP is DOUBLE PRECISION
  168. *> If JOB = 'V' or 'B', SEP is the estimated reciprocal
  169. *> condition number of the specified invariant subspace. If
  170. *> M = 0 or N, SEP = norm(T).
  171. *> If JOB = 'N' or 'E', SEP is not referenced.
  172. *> \endverbatim
  173. *>
  174. *> \param[out] WORK
  175. *> \verbatim
  176. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  177. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  178. *> \endverbatim
  179. *>
  180. *> \param[in] LWORK
  181. *> \verbatim
  182. *> LWORK is INTEGER
  183. *> The dimension of the array WORK.
  184. *> If JOB = 'N', LWORK >= max(1,N);
  185. *> if JOB = 'E', LWORK >= max(1,M*(N-M));
  186. *> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
  187. *>
  188. *> If LWORK = -1, then a workspace query is assumed; the routine
  189. *> only calculates the optimal size of the WORK array, returns
  190. *> this value as the first entry of the WORK array, and no error
  191. *> message related to LWORK is issued by XERBLA.
  192. *> \endverbatim
  193. *>
  194. *> \param[out] IWORK
  195. *> \verbatim
  196. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  197. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  198. *> \endverbatim
  199. *>
  200. *> \param[in] LIWORK
  201. *> \verbatim
  202. *> LIWORK is INTEGER
  203. *> The dimension of the array IWORK.
  204. *> If JOB = 'N' or 'E', LIWORK >= 1;
  205. *> if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
  206. *>
  207. *> If LIWORK = -1, then a workspace query is assumed; the
  208. *> routine only calculates the optimal size of the IWORK array,
  209. *> returns this value as the first entry of the IWORK array, and
  210. *> no error message related to LIWORK is issued by XERBLA.
  211. *> \endverbatim
  212. *>
  213. *> \param[out] INFO
  214. *> \verbatim
  215. *> INFO is INTEGER
  216. *> = 0: successful exit
  217. *> < 0: if INFO = -i, the i-th argument had an illegal value
  218. *> = 1: reordering of T failed because some eigenvalues are too
  219. *> close to separate (the problem is very ill-conditioned);
  220. *> T may have been partially reordered, and WR and WI
  221. *> contain the eigenvalues in the same order as in T; S and
  222. *> SEP (if requested) are set to zero.
  223. *> \endverbatim
  224. *
  225. * Authors:
  226. * ========
  227. *
  228. *> \author Univ. of Tennessee
  229. *> \author Univ. of California Berkeley
  230. *> \author Univ. of Colorado Denver
  231. *> \author NAG Ltd.
  232. *
  233. *> \ingroup doubleOTHERcomputational
  234. *
  235. *> \par Further Details:
  236. * =====================
  237. *>
  238. *> \verbatim
  239. *>
  240. *> DTRSEN first collects the selected eigenvalues by computing an
  241. *> orthogonal transformation Z to move them to the top left corner of T.
  242. *> In other words, the selected eigenvalues are the eigenvalues of T11
  243. *> in:
  244. *>
  245. *> Z**T * T * Z = ( T11 T12 ) n1
  246. *> ( 0 T22 ) n2
  247. *> n1 n2
  248. *>
  249. *> where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
  250. *> of Z span the specified invariant subspace of T.
  251. *>
  252. *> If T has been obtained from the real Schur factorization of a matrix
  253. *> A = Q*T*Q**T, then the reordered real Schur factorization of A is given
  254. *> by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
  255. *> the corresponding invariant subspace of A.
  256. *>
  257. *> The reciprocal condition number of the average of the eigenvalues of
  258. *> T11 may be returned in S. S lies between 0 (very badly conditioned)
  259. *> and 1 (very well conditioned). It is computed as follows. First we
  260. *> compute R so that
  261. *>
  262. *> P = ( I R ) n1
  263. *> ( 0 0 ) n2
  264. *> n1 n2
  265. *>
  266. *> is the projector on the invariant subspace associated with T11.
  267. *> R is the solution of the Sylvester equation:
  268. *>
  269. *> T11*R - R*T22 = T12.
  270. *>
  271. *> Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
  272. *> the two-norm of M. Then S is computed as the lower bound
  273. *>
  274. *> (1 + F-norm(R)**2)**(-1/2)
  275. *>
  276. *> on the reciprocal of 2-norm(P), the true reciprocal condition number.
  277. *> S cannot underestimate 1 / 2-norm(P) by more than a factor of
  278. *> sqrt(N).
  279. *>
  280. *> An approximate error bound for the computed average of the
  281. *> eigenvalues of T11 is
  282. *>
  283. *> EPS * norm(T) / S
  284. *>
  285. *> where EPS is the machine precision.
  286. *>
  287. *> The reciprocal condition number of the right invariant subspace
  288. *> spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
  289. *> SEP is defined as the separation of T11 and T22:
  290. *>
  291. *> sep( T11, T22 ) = sigma-min( C )
  292. *>
  293. *> where sigma-min(C) is the smallest singular value of the
  294. *> n1*n2-by-n1*n2 matrix
  295. *>
  296. *> C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
  297. *>
  298. *> I(m) is an m by m identity matrix, and kprod denotes the Kronecker
  299. *> product. We estimate sigma-min(C) by the reciprocal of an estimate of
  300. *> the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
  301. *> cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
  302. *>
  303. *> When SEP is small, small changes in T can cause large changes in
  304. *> the invariant subspace. An approximate bound on the maximum angular
  305. *> error in the computed right invariant subspace is
  306. *>
  307. *> EPS * norm(T) / SEP
  308. *> \endverbatim
  309. *>
  310. * =====================================================================
  311. SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
  312. $ M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
  313. *
  314. * -- LAPACK computational routine --
  315. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  316. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  317. *
  318. * .. Scalar Arguments ..
  319. CHARACTER COMPQ, JOB
  320. INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
  321. DOUBLE PRECISION S, SEP
  322. * ..
  323. * .. Array Arguments ..
  324. LOGICAL SELECT( * )
  325. INTEGER IWORK( * )
  326. DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
  327. $ WR( * )
  328. * ..
  329. *
  330. * =====================================================================
  331. *
  332. * .. Parameters ..
  333. DOUBLE PRECISION ZERO, ONE
  334. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  335. * ..
  336. * .. Local Scalars ..
  337. LOGICAL LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
  338. $ WANTSP
  339. INTEGER IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
  340. $ NN
  341. DOUBLE PRECISION EST, RNORM, SCALE
  342. * ..
  343. * .. Local Arrays ..
  344. INTEGER ISAVE( 3 )
  345. * ..
  346. * .. External Functions ..
  347. LOGICAL LSAME
  348. DOUBLE PRECISION DLANGE
  349. EXTERNAL LSAME, DLANGE
  350. * ..
  351. * .. External Subroutines ..
  352. EXTERNAL DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
  353. * ..
  354. * .. Intrinsic Functions ..
  355. INTRINSIC ABS, MAX, SQRT
  356. * ..
  357. * .. Executable Statements ..
  358. *
  359. * Decode and test the input parameters
  360. *
  361. WANTBH = LSAME( JOB, 'B' )
  362. WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  363. WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
  364. WANTQ = LSAME( COMPQ, 'V' )
  365. *
  366. INFO = 0
  367. LQUERY = ( LWORK.EQ.-1 )
  368. IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
  369. $ THEN
  370. INFO = -1
  371. ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
  372. INFO = -2
  373. ELSE IF( N.LT.0 ) THEN
  374. INFO = -4
  375. ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  376. INFO = -6
  377. ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  378. INFO = -8
  379. ELSE
  380. *
  381. * Set M to the dimension of the specified invariant subspace,
  382. * and test LWORK and LIWORK.
  383. *
  384. M = 0
  385. PAIR = .FALSE.
  386. DO 10 K = 1, N
  387. IF( PAIR ) THEN
  388. PAIR = .FALSE.
  389. ELSE
  390. IF( K.LT.N ) THEN
  391. IF( T( K+1, K ).EQ.ZERO ) THEN
  392. IF( SELECT( K ) )
  393. $ M = M + 1
  394. ELSE
  395. PAIR = .TRUE.
  396. IF( SELECT( K ) .OR. SELECT( K+1 ) )
  397. $ M = M + 2
  398. END IF
  399. ELSE
  400. IF( SELECT( N ) )
  401. $ M = M + 1
  402. END IF
  403. END IF
  404. 10 CONTINUE
  405. *
  406. N1 = M
  407. N2 = N - M
  408. NN = N1*N2
  409. *
  410. IF( WANTSP ) THEN
  411. LWMIN = MAX( 1, 2*NN )
  412. LIWMIN = MAX( 1, NN )
  413. ELSE IF( LSAME( JOB, 'N' ) ) THEN
  414. LWMIN = MAX( 1, N )
  415. LIWMIN = 1
  416. ELSE IF( LSAME( JOB, 'E' ) ) THEN
  417. LWMIN = MAX( 1, NN )
  418. LIWMIN = 1
  419. END IF
  420. *
  421. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  422. INFO = -15
  423. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  424. INFO = -17
  425. END IF
  426. END IF
  427. *
  428. IF( INFO.EQ.0 ) THEN
  429. WORK( 1 ) = LWMIN
  430. IWORK( 1 ) = LIWMIN
  431. END IF
  432. *
  433. IF( INFO.NE.0 ) THEN
  434. CALL XERBLA( 'DTRSEN', -INFO )
  435. RETURN
  436. ELSE IF( LQUERY ) THEN
  437. RETURN
  438. END IF
  439. *
  440. * Quick return if possible.
  441. *
  442. IF( M.EQ.N .OR. M.EQ.0 ) THEN
  443. IF( WANTS )
  444. $ S = ONE
  445. IF( WANTSP )
  446. $ SEP = DLANGE( '1', N, N, T, LDT, WORK )
  447. GO TO 40
  448. END IF
  449. *
  450. * Collect the selected blocks at the top-left corner of T.
  451. *
  452. KS = 0
  453. PAIR = .FALSE.
  454. DO 20 K = 1, N
  455. IF( PAIR ) THEN
  456. PAIR = .FALSE.
  457. ELSE
  458. SWAP = SELECT( K )
  459. IF( K.LT.N ) THEN
  460. IF( T( K+1, K ).NE.ZERO ) THEN
  461. PAIR = .TRUE.
  462. SWAP = SWAP .OR. SELECT( K+1 )
  463. END IF
  464. END IF
  465. IF( SWAP ) THEN
  466. KS = KS + 1
  467. *
  468. * Swap the K-th block to position KS.
  469. *
  470. IERR = 0
  471. KK = K
  472. IF( K.NE.KS )
  473. $ CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
  474. $ IERR )
  475. IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
  476. *
  477. * Blocks too close to swap: exit.
  478. *
  479. INFO = 1
  480. IF( WANTS )
  481. $ S = ZERO
  482. IF( WANTSP )
  483. $ SEP = ZERO
  484. GO TO 40
  485. END IF
  486. IF( PAIR )
  487. $ KS = KS + 1
  488. END IF
  489. END IF
  490. 20 CONTINUE
  491. *
  492. IF( WANTS ) THEN
  493. *
  494. * Solve Sylvester equation for R:
  495. *
  496. * T11*R - R*T22 = scale*T12
  497. *
  498. CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
  499. CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
  500. $ LDT, WORK, N1, SCALE, IERR )
  501. *
  502. * Estimate the reciprocal of the condition number of the cluster
  503. * of eigenvalues.
  504. *
  505. RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
  506. IF( RNORM.EQ.ZERO ) THEN
  507. S = ONE
  508. ELSE
  509. S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
  510. $ SQRT( RNORM ) )
  511. END IF
  512. END IF
  513. *
  514. IF( WANTSP ) THEN
  515. *
  516. * Estimate sep(T11,T22).
  517. *
  518. EST = ZERO
  519. KASE = 0
  520. 30 CONTINUE
  521. CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
  522. IF( KASE.NE.0 ) THEN
  523. IF( KASE.EQ.1 ) THEN
  524. *
  525. * Solve T11*R - R*T22 = scale*X.
  526. *
  527. CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
  528. $ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
  529. $ IERR )
  530. ELSE
  531. *
  532. * Solve T11**T*R - R*T22**T = scale*X.
  533. *
  534. CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
  535. $ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
  536. $ IERR )
  537. END IF
  538. GO TO 30
  539. END IF
  540. *
  541. SEP = SCALE / EST
  542. END IF
  543. *
  544. 40 CONTINUE
  545. *
  546. * Store the output eigenvalues in WR and WI.
  547. *
  548. DO 50 K = 1, N
  549. WR( K ) = T( K, K )
  550. WI( K ) = ZERO
  551. 50 CONTINUE
  552. DO 60 K = 1, N - 1
  553. IF( T( K+1, K ).NE.ZERO ) THEN
  554. WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
  555. $ SQRT( ABS( T( K+1, K ) ) )
  556. WI( K+1 ) = -WI( K )
  557. END IF
  558. 60 CONTINUE
  559. *
  560. WORK( 1 ) = LWMIN
  561. IWORK( 1 ) = LIWMIN
  562. *
  563. RETURN
  564. *
  565. * End of DTRSEN
  566. *
  567. END