You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zla_porpvgrw.f 6.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. *> \brief \b ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLA_PORPVGRW + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_porpvgrw.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_porpvgrw.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_porpvgrw.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
  22. * LDAF, WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER*1 UPLO
  26. * INTEGER NCOLS, LDA, LDAF
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), AF( LDAF, * )
  30. * DOUBLE PRECISION WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *>
  40. *> ZLA_PORPVGRW computes the reciprocal pivot growth factor
  41. *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
  42. *> much less than 1, the stability of the LU factorization of the
  43. *> (equilibrated) matrix A could be poor. This also means that the
  44. *> solution X, estimated condition numbers, and error bounds could be
  45. *> unreliable.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] NCOLS
  59. *> \verbatim
  60. *> NCOLS is INTEGER
  61. *> The number of columns of the matrix A. NCOLS >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] A
  65. *> \verbatim
  66. *> A is COMPLEX*16 array, dimension (LDA,N)
  67. *> On entry, the N-by-N matrix A.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] LDA
  71. *> \verbatim
  72. *> LDA is INTEGER
  73. *> The leading dimension of the array A. LDA >= max(1,N).
  74. *> \endverbatim
  75. *>
  76. *> \param[in] AF
  77. *> \verbatim
  78. *> AF is COMPLEX*16 array, dimension (LDAF,N)
  79. *> The triangular factor U or L from the Cholesky factorization
  80. *> A = U**T*U or A = L*L**T, as computed by ZPOTRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDAF
  84. *> \verbatim
  85. *> LDAF is INTEGER
  86. *> The leading dimension of the array AF. LDAF >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[in] WORK
  90. *> \verbatim
  91. *> WORK is COMPLEX*16 array, dimension (2*N)
  92. *> \endverbatim
  93. *
  94. * Authors:
  95. * ========
  96. *
  97. *> \author Univ. of Tennessee
  98. *> \author Univ. of California Berkeley
  99. *> \author Univ. of Colorado Denver
  100. *> \author NAG Ltd.
  101. *
  102. *> \date September 2012
  103. *
  104. *> \ingroup complex16POcomputational
  105. *
  106. * =====================================================================
  107. DOUBLE PRECISION FUNCTION ZLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
  108. $ LDAF, WORK )
  109. *
  110. * -- LAPACK computational routine (version 3.4.2) --
  111. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  112. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  113. * September 2012
  114. *
  115. * .. Scalar Arguments ..
  116. CHARACTER*1 UPLO
  117. INTEGER NCOLS, LDA, LDAF
  118. * ..
  119. * .. Array Arguments ..
  120. COMPLEX*16 A( LDA, * ), AF( LDAF, * )
  121. DOUBLE PRECISION WORK( * )
  122. * ..
  123. *
  124. * =====================================================================
  125. *
  126. * .. Local Scalars ..
  127. INTEGER I, J
  128. DOUBLE PRECISION AMAX, UMAX, RPVGRW
  129. LOGICAL UPPER
  130. COMPLEX*16 ZDUM
  131. * ..
  132. * .. External Functions ..
  133. EXTERNAL LSAME, ZLASET
  134. LOGICAL LSAME
  135. * ..
  136. * .. Intrinsic Functions ..
  137. INTRINSIC ABS, MAX, MIN, REAL, DIMAG
  138. * ..
  139. * .. Statement Functions ..
  140. DOUBLE PRECISION CABS1
  141. * ..
  142. * .. Statement Function Definitions ..
  143. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  144. * ..
  145. * .. Executable Statements ..
  146. UPPER = LSAME( 'Upper', UPLO )
  147. *
  148. * DPOTRF will have factored only the NCOLSxNCOLS leading minor, so
  149. * we restrict the growth search to that minor and use only the first
  150. * 2*NCOLS workspace entries.
  151. *
  152. RPVGRW = 1.0D+0
  153. DO I = 1, 2*NCOLS
  154. WORK( I ) = 0.0D+0
  155. END DO
  156. *
  157. * Find the max magnitude entry of each column.
  158. *
  159. IF ( UPPER ) THEN
  160. DO J = 1, NCOLS
  161. DO I = 1, J
  162. WORK( NCOLS+J ) =
  163. $ MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
  164. END DO
  165. END DO
  166. ELSE
  167. DO J = 1, NCOLS
  168. DO I = J, NCOLS
  169. WORK( NCOLS+J ) =
  170. $ MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
  171. END DO
  172. END DO
  173. END IF
  174. *
  175. * Now find the max magnitude entry of each column of the factor in
  176. * AF. No pivoting, so no permutations.
  177. *
  178. IF ( LSAME( 'Upper', UPLO ) ) THEN
  179. DO J = 1, NCOLS
  180. DO I = 1, J
  181. WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
  182. END DO
  183. END DO
  184. ELSE
  185. DO J = 1, NCOLS
  186. DO I = J, NCOLS
  187. WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
  188. END DO
  189. END DO
  190. END IF
  191. *
  192. * Compute the *inverse* of the max element growth factor. Dividing
  193. * by zero would imply the largest entry of the factor's column is
  194. * zero. Than can happen when either the column of A is zero or
  195. * massive pivots made the factor underflow to zero. Neither counts
  196. * as growth in itself, so simply ignore terms with zero
  197. * denominators.
  198. *
  199. IF ( LSAME( 'Upper', UPLO ) ) THEN
  200. DO I = 1, NCOLS
  201. UMAX = WORK( I )
  202. AMAX = WORK( NCOLS+I )
  203. IF ( UMAX /= 0.0D+0 ) THEN
  204. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  205. END IF
  206. END DO
  207. ELSE
  208. DO I = 1, NCOLS
  209. UMAX = WORK( I )
  210. AMAX = WORK( NCOLS+I )
  211. IF ( UMAX /= 0.0D+0 ) THEN
  212. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  213. END IF
  214. END DO
  215. END IF
  216. ZLA_PORPVGRW = RPVGRW
  217. END