You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetf2.f 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628
  1. *> \brief \b ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHETF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZHETF2 computes the factorization of a complex Hermitian matrix A
  39. *> using the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**H or A = L*D*L**H
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, U**H is the conjugate transpose of U, and D is
  45. *> Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the upper or lower triangular part of the
  57. *> Hermitian matrix A is stored:
  58. *> = 'U': Upper triangular
  59. *> = 'L': Lower triangular
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is COMPLEX*16 array, dimension (LDA,N)
  71. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  72. *> n-by-n upper triangular part of A contains the upper
  73. *> triangular part of the matrix A, and the strictly lower
  74. *> triangular part of A is not referenced. If UPLO = 'L', the
  75. *> leading n-by-n lower triangular part of A contains the lower
  76. *> triangular part of the matrix A, and the strictly upper
  77. *> triangular part of A is not referenced.
  78. *>
  79. *> On exit, the block diagonal matrix D and the multipliers used
  80. *> to obtain the factor U or L (see below for further details).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] IPIV
  90. *> \verbatim
  91. *> IPIV is INTEGER array, dimension (N)
  92. *> Details of the interchanges and the block structure of D.
  93. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  94. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  95. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  96. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  97. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  98. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  99. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  100. *> \endverbatim
  101. *>
  102. *> \param[out] INFO
  103. *> \verbatim
  104. *> INFO is INTEGER
  105. *> = 0: successful exit
  106. *> < 0: if INFO = -k, the k-th argument had an illegal value
  107. *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
  108. *> has been completed, but the block diagonal matrix D is
  109. *> exactly singular, and division by zero will occur if it
  110. *> is used to solve a system of equations.
  111. *> \endverbatim
  112. *
  113. * Authors:
  114. * ========
  115. *
  116. *> \author Univ. of Tennessee
  117. *> \author Univ. of California Berkeley
  118. *> \author Univ. of Colorado Denver
  119. *> \author NAG Ltd.
  120. *
  121. *> \date September 2012
  122. *
  123. *> \ingroup complex16HEcomputational
  124. *
  125. *> \par Further Details:
  126. * =====================
  127. *>
  128. *> \verbatim
  129. *>
  130. *> If UPLO = 'U', then A = U*D*U**H, where
  131. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  132. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  133. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  134. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  135. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  136. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  137. *>
  138. *> ( I v 0 ) k-s
  139. *> U(k) = ( 0 I 0 ) s
  140. *> ( 0 0 I ) n-k
  141. *> k-s s n-k
  142. *>
  143. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  144. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  145. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  146. *>
  147. *> If UPLO = 'L', then A = L*D*L**H, where
  148. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  149. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  150. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  151. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  152. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  153. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  154. *>
  155. *> ( I 0 0 ) k-1
  156. *> L(k) = ( 0 I 0 ) s
  157. *> ( 0 v I ) n-k-s+1
  158. *> k-1 s n-k-s+1
  159. *>
  160. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  161. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  162. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  163. *> \endverbatim
  164. *
  165. *> \par Contributors:
  166. * ==================
  167. *>
  168. *> \verbatim
  169. *> 09-29-06 - patch from
  170. *> Bobby Cheng, MathWorks
  171. *>
  172. *> Replace l.210 and l.393
  173. *> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  174. *> by
  175. *> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  176. *>
  177. *> 01-01-96 - Based on modifications by
  178. *> J. Lewis, Boeing Computer Services Company
  179. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  180. *> \endverbatim
  181. *
  182. * =====================================================================
  183. SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
  184. *
  185. * -- LAPACK computational routine (version 3.4.2) --
  186. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  187. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  188. * September 2012
  189. *
  190. * .. Scalar Arguments ..
  191. CHARACTER UPLO
  192. INTEGER INFO, LDA, N
  193. * ..
  194. * .. Array Arguments ..
  195. INTEGER IPIV( * )
  196. COMPLEX*16 A( LDA, * )
  197. * ..
  198. *
  199. * =====================================================================
  200. *
  201. * .. Parameters ..
  202. DOUBLE PRECISION ZERO, ONE
  203. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  204. DOUBLE PRECISION EIGHT, SEVTEN
  205. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  206. * ..
  207. * .. Local Scalars ..
  208. LOGICAL UPPER
  209. INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP
  210. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
  211. $ TT
  212. COMPLEX*16 D12, D21, T, WK, WKM1, WKP1, ZDUM
  213. * ..
  214. * .. External Functions ..
  215. LOGICAL LSAME, DISNAN
  216. INTEGER IZAMAX
  217. DOUBLE PRECISION DLAPY2
  218. EXTERNAL LSAME, IZAMAX, DLAPY2, DISNAN
  219. * ..
  220. * .. External Subroutines ..
  221. EXTERNAL XERBLA, ZDSCAL, ZHER, ZSWAP
  222. * ..
  223. * .. Intrinsic Functions ..
  224. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  225. * ..
  226. * .. Statement Functions ..
  227. DOUBLE PRECISION CABS1
  228. * ..
  229. * .. Statement Function definitions ..
  230. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  231. * ..
  232. * .. Executable Statements ..
  233. *
  234. * Test the input parameters.
  235. *
  236. INFO = 0
  237. UPPER = LSAME( UPLO, 'U' )
  238. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  239. INFO = -1
  240. ELSE IF( N.LT.0 ) THEN
  241. INFO = -2
  242. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  243. INFO = -4
  244. END IF
  245. IF( INFO.NE.0 ) THEN
  246. CALL XERBLA( 'ZHETF2', -INFO )
  247. RETURN
  248. END IF
  249. *
  250. * Initialize ALPHA for use in choosing pivot block size.
  251. *
  252. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  253. *
  254. IF( UPPER ) THEN
  255. *
  256. * Factorize A as U*D*U**H using the upper triangle of A
  257. *
  258. * K is the main loop index, decreasing from N to 1 in steps of
  259. * 1 or 2
  260. *
  261. K = N
  262. 10 CONTINUE
  263. *
  264. * If K < 1, exit from loop
  265. *
  266. IF( K.LT.1 )
  267. $ GO TO 90
  268. KSTEP = 1
  269. *
  270. * Determine rows and columns to be interchanged and whether
  271. * a 1-by-1 or 2-by-2 pivot block will be used
  272. *
  273. ABSAKK = ABS( DBLE( A( K, K ) ) )
  274. *
  275. * IMAX is the row-index of the largest off-diagonal element in
  276. * column K, and COLMAX is its absolute value
  277. *
  278. IF( K.GT.1 ) THEN
  279. IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  280. COLMAX = CABS1( A( IMAX, K ) )
  281. ELSE
  282. COLMAX = ZERO
  283. END IF
  284. *
  285. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  286. *
  287. * Column K is zero or contains a NaN: set INFO and continue
  288. *
  289. IF( INFO.EQ.0 )
  290. $ INFO = K
  291. KP = K
  292. A( K, K ) = DBLE( A( K, K ) )
  293. ELSE
  294. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  295. *
  296. * no interchange, use 1-by-1 pivot block
  297. *
  298. KP = K
  299. ELSE
  300. *
  301. * JMAX is the column-index of the largest off-diagonal
  302. * element in row IMAX, and ROWMAX is its absolute value
  303. *
  304. JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  305. ROWMAX = CABS1( A( IMAX, JMAX ) )
  306. IF( IMAX.GT.1 ) THEN
  307. JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  308. ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  309. END IF
  310. *
  311. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  312. *
  313. * no interchange, use 1-by-1 pivot block
  314. *
  315. KP = K
  316. ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
  317. $ THEN
  318. *
  319. * interchange rows and columns K and IMAX, use 1-by-1
  320. * pivot block
  321. *
  322. KP = IMAX
  323. ELSE
  324. *
  325. * interchange rows and columns K-1 and IMAX, use 2-by-2
  326. * pivot block
  327. *
  328. KP = IMAX
  329. KSTEP = 2
  330. END IF
  331. END IF
  332. *
  333. KK = K - KSTEP + 1
  334. IF( KP.NE.KK ) THEN
  335. *
  336. * Interchange rows and columns KK and KP in the leading
  337. * submatrix A(1:k,1:k)
  338. *
  339. CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  340. DO 20 J = KP + 1, KK - 1
  341. T = DCONJG( A( J, KK ) )
  342. A( J, KK ) = DCONJG( A( KP, J ) )
  343. A( KP, J ) = T
  344. 20 CONTINUE
  345. A( KP, KK ) = DCONJG( A( KP, KK ) )
  346. R1 = DBLE( A( KK, KK ) )
  347. A( KK, KK ) = DBLE( A( KP, KP ) )
  348. A( KP, KP ) = R1
  349. IF( KSTEP.EQ.2 ) THEN
  350. A( K, K ) = DBLE( A( K, K ) )
  351. T = A( K-1, K )
  352. A( K-1, K ) = A( KP, K )
  353. A( KP, K ) = T
  354. END IF
  355. ELSE
  356. A( K, K ) = DBLE( A( K, K ) )
  357. IF( KSTEP.EQ.2 )
  358. $ A( K-1, K-1 ) = DBLE( A( K-1, K-1 ) )
  359. END IF
  360. *
  361. * Update the leading submatrix
  362. *
  363. IF( KSTEP.EQ.1 ) THEN
  364. *
  365. * 1-by-1 pivot block D(k): column k now holds
  366. *
  367. * W(k) = U(k)*D(k)
  368. *
  369. * where U(k) is the k-th column of U
  370. *
  371. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  372. *
  373. * A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
  374. *
  375. R1 = ONE / DBLE( A( K, K ) )
  376. CALL ZHER( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  377. *
  378. * Store U(k) in column k
  379. *
  380. CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
  381. ELSE
  382. *
  383. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  384. *
  385. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  386. *
  387. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  388. * of U
  389. *
  390. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  391. *
  392. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
  393. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
  394. *
  395. IF( K.GT.2 ) THEN
  396. *
  397. D = DLAPY2( DBLE( A( K-1, K ) ),
  398. $ DIMAG( A( K-1, K ) ) )
  399. D22 = DBLE( A( K-1, K-1 ) ) / D
  400. D11 = DBLE( A( K, K ) ) / D
  401. TT = ONE / ( D11*D22-ONE )
  402. D12 = A( K-1, K ) / D
  403. D = TT / D
  404. *
  405. DO 40 J = K - 2, 1, -1
  406. WKM1 = D*( D11*A( J, K-1 )-DCONJG( D12 )*
  407. $ A( J, K ) )
  408. WK = D*( D22*A( J, K )-D12*A( J, K-1 ) )
  409. DO 30 I = J, 1, -1
  410. A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
  411. $ A( I, K-1 )*DCONJG( WKM1 )
  412. 30 CONTINUE
  413. A( J, K ) = WK
  414. A( J, K-1 ) = WKM1
  415. A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
  416. 40 CONTINUE
  417. *
  418. END IF
  419. *
  420. END IF
  421. END IF
  422. *
  423. * Store details of the interchanges in IPIV
  424. *
  425. IF( KSTEP.EQ.1 ) THEN
  426. IPIV( K ) = KP
  427. ELSE
  428. IPIV( K ) = -KP
  429. IPIV( K-1 ) = -KP
  430. END IF
  431. *
  432. * Decrease K and return to the start of the main loop
  433. *
  434. K = K - KSTEP
  435. GO TO 10
  436. *
  437. ELSE
  438. *
  439. * Factorize A as L*D*L**H using the lower triangle of A
  440. *
  441. * K is the main loop index, increasing from 1 to N in steps of
  442. * 1 or 2
  443. *
  444. K = 1
  445. 50 CONTINUE
  446. *
  447. * If K > N, exit from loop
  448. *
  449. IF( K.GT.N )
  450. $ GO TO 90
  451. KSTEP = 1
  452. *
  453. * Determine rows and columns to be interchanged and whether
  454. * a 1-by-1 or 2-by-2 pivot block will be used
  455. *
  456. ABSAKK = ABS( DBLE( A( K, K ) ) )
  457. *
  458. * IMAX is the row-index of the largest off-diagonal element in
  459. * column K, and COLMAX is its absolute value
  460. *
  461. IF( K.LT.N ) THEN
  462. IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  463. COLMAX = CABS1( A( IMAX, K ) )
  464. ELSE
  465. COLMAX = ZERO
  466. END IF
  467. *
  468. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  469. *
  470. * Column K is zero or contains a NaN: set INFO and continue
  471. *
  472. IF( INFO.EQ.0 )
  473. $ INFO = K
  474. KP = K
  475. A( K, K ) = DBLE( A( K, K ) )
  476. ELSE
  477. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  478. *
  479. * no interchange, use 1-by-1 pivot block
  480. *
  481. KP = K
  482. ELSE
  483. *
  484. * JMAX is the column-index of the largest off-diagonal
  485. * element in row IMAX, and ROWMAX is its absolute value
  486. *
  487. JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  488. ROWMAX = CABS1( A( IMAX, JMAX ) )
  489. IF( IMAX.LT.N ) THEN
  490. JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  491. ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  492. END IF
  493. *
  494. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  495. *
  496. * no interchange, use 1-by-1 pivot block
  497. *
  498. KP = K
  499. ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
  500. $ THEN
  501. *
  502. * interchange rows and columns K and IMAX, use 1-by-1
  503. * pivot block
  504. *
  505. KP = IMAX
  506. ELSE
  507. *
  508. * interchange rows and columns K+1 and IMAX, use 2-by-2
  509. * pivot block
  510. *
  511. KP = IMAX
  512. KSTEP = 2
  513. END IF
  514. END IF
  515. *
  516. KK = K + KSTEP - 1
  517. IF( KP.NE.KK ) THEN
  518. *
  519. * Interchange rows and columns KK and KP in the trailing
  520. * submatrix A(k:n,k:n)
  521. *
  522. IF( KP.LT.N )
  523. $ CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  524. DO 60 J = KK + 1, KP - 1
  525. T = DCONJG( A( J, KK ) )
  526. A( J, KK ) = DCONJG( A( KP, J ) )
  527. A( KP, J ) = T
  528. 60 CONTINUE
  529. A( KP, KK ) = DCONJG( A( KP, KK ) )
  530. R1 = DBLE( A( KK, KK ) )
  531. A( KK, KK ) = DBLE( A( KP, KP ) )
  532. A( KP, KP ) = R1
  533. IF( KSTEP.EQ.2 ) THEN
  534. A( K, K ) = DBLE( A( K, K ) )
  535. T = A( K+1, K )
  536. A( K+1, K ) = A( KP, K )
  537. A( KP, K ) = T
  538. END IF
  539. ELSE
  540. A( K, K ) = DBLE( A( K, K ) )
  541. IF( KSTEP.EQ.2 )
  542. $ A( K+1, K+1 ) = DBLE( A( K+1, K+1 ) )
  543. END IF
  544. *
  545. * Update the trailing submatrix
  546. *
  547. IF( KSTEP.EQ.1 ) THEN
  548. *
  549. * 1-by-1 pivot block D(k): column k now holds
  550. *
  551. * W(k) = L(k)*D(k)
  552. *
  553. * where L(k) is the k-th column of L
  554. *
  555. IF( K.LT.N ) THEN
  556. *
  557. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  558. *
  559. * A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
  560. *
  561. R1 = ONE / DBLE( A( K, K ) )
  562. CALL ZHER( UPLO, N-K, -R1, A( K+1, K ), 1,
  563. $ A( K+1, K+1 ), LDA )
  564. *
  565. * Store L(k) in column K
  566. *
  567. CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
  568. END IF
  569. ELSE
  570. *
  571. * 2-by-2 pivot block D(k)
  572. *
  573. IF( K.LT.N-1 ) THEN
  574. *
  575. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  576. *
  577. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
  578. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
  579. *
  580. * where L(k) and L(k+1) are the k-th and (k+1)-th
  581. * columns of L
  582. *
  583. D = DLAPY2( DBLE( A( K+1, K ) ),
  584. $ DIMAG( A( K+1, K ) ) )
  585. D11 = DBLE( A( K+1, K+1 ) ) / D
  586. D22 = DBLE( A( K, K ) ) / D
  587. TT = ONE / ( D11*D22-ONE )
  588. D21 = A( K+1, K ) / D
  589. D = TT / D
  590. *
  591. DO 80 J = K + 2, N
  592. WK = D*( D11*A( J, K )-D21*A( J, K+1 ) )
  593. WKP1 = D*( D22*A( J, K+1 )-DCONJG( D21 )*
  594. $ A( J, K ) )
  595. DO 70 I = J, N
  596. A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
  597. $ A( I, K+1 )*DCONJG( WKP1 )
  598. 70 CONTINUE
  599. A( J, K ) = WK
  600. A( J, K+1 ) = WKP1
  601. A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
  602. 80 CONTINUE
  603. END IF
  604. END IF
  605. END IF
  606. *
  607. * Store details of the interchanges in IPIV
  608. *
  609. IF( KSTEP.EQ.1 ) THEN
  610. IPIV( K ) = KP
  611. ELSE
  612. IPIV( K ) = -KP
  613. IPIV( K+1 ) = -KP
  614. END IF
  615. *
  616. * Increase K and return to the start of the main loop
  617. *
  618. K = K + KSTEP
  619. GO TO 50
  620. *
  621. END IF
  622. *
  623. 90 CONTINUE
  624. RETURN
  625. *
  626. * End of ZHETF2
  627. *
  628. END