You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgeqrf.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417
  1. C> \brief \b DGEQRF VARIANT: left-looking Level 3 BLAS version of the algorithm.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DGEQRF ( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INFO, LDA, LWORK, M, N
  15. * ..
  16. * .. Array Arguments ..
  17. * DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
  18. * ..
  19. *
  20. * Purpose
  21. * =======
  22. *
  23. C>\details \b Purpose:
  24. C>\verbatim
  25. C>
  26. C> DGEQRF computes a QR factorization of a real M-by-N matrix A:
  27. C> A = Q * R.
  28. C>
  29. C> This is the left-looking Level 3 BLAS version of the algorithm.
  30. C>
  31. C>\endverbatim
  32. *
  33. * Arguments:
  34. * ==========
  35. *
  36. C> \param[in] M
  37. C> \verbatim
  38. C> M is INTEGER
  39. C> The number of rows of the matrix A. M >= 0.
  40. C> \endverbatim
  41. C>
  42. C> \param[in] N
  43. C> \verbatim
  44. C> N is INTEGER
  45. C> The number of columns of the matrix A. N >= 0.
  46. C> \endverbatim
  47. C>
  48. C> \param[in,out] A
  49. C> \verbatim
  50. C> A is DOUBLE PRECISION array, dimension (LDA,N)
  51. C> On entry, the M-by-N matrix A.
  52. C> On exit, the elements on and above the diagonal of the array
  53. C> contain the min(M,N)-by-N upper trapezoidal matrix R (R is
  54. C> upper triangular if m >= n); the elements below the diagonal,
  55. C> with the array TAU, represent the orthogonal matrix Q as a
  56. C> product of min(m,n) elementary reflectors (see Further
  57. C> Details).
  58. C> \endverbatim
  59. C>
  60. C> \param[in] LDA
  61. C> \verbatim
  62. C> LDA is INTEGER
  63. C> The leading dimension of the array A. LDA >= max(1,M).
  64. C> \endverbatim
  65. C>
  66. C> \param[out] TAU
  67. C> \verbatim
  68. C> TAU is DOUBLE PRECISION array, dimension (min(M,N))
  69. C> The scalar factors of the elementary reflectors (see Further
  70. C> Details).
  71. C> \endverbatim
  72. C>
  73. C> \param[out] WORK
  74. C> \verbatim
  75. C> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  76. C> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  77. C> \endverbatim
  78. C>
  79. C> \param[in] LWORK
  80. C> \verbatim
  81. C> LWORK is INTEGER
  82. C> \endverbatim
  83. C> \verbatim
  84. C> The dimension of the array WORK. The dimension can be divided into three parts.
  85. C> \endverbatim
  86. C> \verbatim
  87. C> 1) The part for the triangular factor T. If the very last T is not bigger
  88. C> than any of the rest, then this part is NB x ceiling(K/NB), otherwise,
  89. C> NB x (K-NT), where K = min(M,N) and NT is the dimension of the very last T
  90. C> \endverbatim
  91. C> \verbatim
  92. C> 2) The part for the very last T when T is bigger than any of the rest T.
  93. C> The size of this part is NT x NT, where NT = K - ceiling ((K-NX)/NB) x NB,
  94. C> where K = min(M,N), NX is calculated by
  95. C> NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) )
  96. C> \endverbatim
  97. C> \verbatim
  98. C> 3) The part for dlarfb is of size max((N-M)*K, (N-M)*NB, K*NB, NB*NB)
  99. C> \endverbatim
  100. C> \verbatim
  101. C> So LWORK = part1 + part2 + part3
  102. C> \endverbatim
  103. C> \verbatim
  104. C> If LWORK = -1, then a workspace query is assumed; the routine
  105. C> only calculates the optimal size of the WORK array, returns
  106. C> this value as the first entry of the WORK array, and no error
  107. C> message related to LWORK is issued by XERBLA.
  108. C> \endverbatim
  109. C>
  110. C> \param[out] INFO
  111. C> \verbatim
  112. C> INFO is INTEGER
  113. C> = 0: successful exit
  114. C> < 0: if INFO = -i, the i-th argument had an illegal value
  115. C> \endverbatim
  116. C>
  117. *
  118. * Authors:
  119. * ========
  120. *
  121. C> \author Univ. of Tennessee
  122. C> \author Univ. of California Berkeley
  123. C> \author Univ. of Colorado Denver
  124. C> \author NAG Ltd.
  125. *
  126. C> \date November 2011
  127. *
  128. C> \ingroup variantsGEcomputational
  129. *
  130. * Further Details
  131. * ===============
  132. C>\details \b Further \b Details
  133. C> \verbatim
  134. C>
  135. C> The matrix Q is represented as a product of elementary reflectors
  136. C>
  137. C> Q = H(1) H(2) . . . H(k), where k = min(m,n).
  138. C>
  139. C> Each H(i) has the form
  140. C>
  141. C> H(i) = I - tau * v * v'
  142. C>
  143. C> where tau is a real scalar, and v is a real vector with
  144. C> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  145. C> and tau in TAU(i).
  146. C>
  147. C> \endverbatim
  148. C>
  149. * =====================================================================
  150. SUBROUTINE DGEQRF ( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  151. *
  152. * -- LAPACK computational routine (version 3.1) --
  153. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  154. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  155. * November 2011
  156. *
  157. * .. Scalar Arguments ..
  158. INTEGER INFO, LDA, LWORK, M, N
  159. * ..
  160. * .. Array Arguments ..
  161. DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
  162. * ..
  163. *
  164. * =====================================================================
  165. *
  166. * .. Local Scalars ..
  167. LOGICAL LQUERY
  168. INTEGER I, IB, IINFO, IWS, J, K, LWKOPT, NB,
  169. $ NBMIN, NX, LBWORK, NT, LLWORK
  170. * ..
  171. * .. External Subroutines ..
  172. EXTERNAL DGEQR2, DLARFB, DLARFT, XERBLA
  173. * ..
  174. * .. Intrinsic Functions ..
  175. INTRINSIC MAX, MIN
  176. * ..
  177. * .. External Functions ..
  178. INTEGER ILAENV
  179. REAL SCEIL
  180. EXTERNAL ILAENV, SCEIL
  181. * ..
  182. * .. Executable Statements ..
  183. INFO = 0
  184. NBMIN = 2
  185. NX = 0
  186. IWS = N
  187. K = MIN( M, N )
  188. NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
  189. IF( NB.GT.1 .AND. NB.LT.K ) THEN
  190. *
  191. * Determine when to cross over from blocked to unblocked code.
  192. *
  193. NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) )
  194. END IF
  195. *
  196. * Get NT, the size of the very last T, which is the left-over from in-between K-NX and K to K, eg.:
  197. *
  198. * NB=3 2NB=6 K=10
  199. * | | |
  200. * 1--2--3--4--5--6--7--8--9--10
  201. * | \________/
  202. * K-NX=5 NT=4
  203. *
  204. * So here 4 x 4 is the last T stored in the workspace
  205. *
  206. NT = K-SCEIL(REAL(K-NX)/REAL(NB))*NB
  207. *
  208. * optimal workspace = space for dlarfb + space for normal T's + space for the last T
  209. *
  210. LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB))
  211. LLWORK = SCEIL(REAL(LLWORK)/REAL(NB))
  212. IF ( NT.GT.NB ) THEN
  213. LBWORK = K-NT
  214. *
  215. * Optimal workspace for dlarfb = MAX(1,N)*NT
  216. *
  217. LWKOPT = (LBWORK+LLWORK)*NB
  218. WORK( 1 ) = (LWKOPT+NT*NT)
  219. ELSE
  220. LBWORK = SCEIL(REAL(K)/REAL(NB))*NB
  221. LWKOPT = (LBWORK+LLWORK-NB)*NB
  222. WORK( 1 ) = LWKOPT
  223. END IF
  224. *
  225. * Test the input arguments
  226. *
  227. LQUERY = ( LWORK.EQ.-1 )
  228. IF( M.LT.0 ) THEN
  229. INFO = -1
  230. ELSE IF( N.LT.0 ) THEN
  231. INFO = -2
  232. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  233. INFO = -4
  234. ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
  235. INFO = -7
  236. END IF
  237. IF( INFO.NE.0 ) THEN
  238. CALL XERBLA( 'DGEQRF', -INFO )
  239. RETURN
  240. ELSE IF( LQUERY ) THEN
  241. RETURN
  242. END IF
  243. *
  244. * Quick return if possible
  245. *
  246. IF( K.EQ.0 ) THEN
  247. WORK( 1 ) = 1
  248. RETURN
  249. END IF
  250. *
  251. IF( NB.GT.1 .AND. NB.LT.K ) THEN
  252. IF( NX.LT.K ) THEN
  253. *
  254. * Determine if workspace is large enough for blocked code.
  255. *
  256. IF ( NT.LE.NB ) THEN
  257. IWS = (LBWORK+LLWORK-NB)*NB
  258. ELSE
  259. IWS = (LBWORK+LLWORK)*NB+NT*NT
  260. END IF
  261. IF( LWORK.LT.IWS ) THEN
  262. *
  263. * Not enough workspace to use optimal NB: reduce NB and
  264. * determine the minimum value of NB.
  265. *
  266. IF ( NT.LE.NB ) THEN
  267. NB = LWORK / (LLWORK+(LBWORK-NB))
  268. ELSE
  269. NB = (LWORK-NT*NT)/(LBWORK+LLWORK)
  270. END IF
  271. NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', M, N, -1,
  272. $ -1 ) )
  273. END IF
  274. END IF
  275. END IF
  276. *
  277. IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
  278. *
  279. * Use blocked code initially
  280. *
  281. DO 10 I = 1, K - NX, NB
  282. IB = MIN( K-I+1, NB )
  283. *
  284. * Update the current column using old T's
  285. *
  286. DO 20 J = 1, I - NB, NB
  287. *
  288. * Apply H' to A(J:M,I:I+IB-1) from the left
  289. *
  290. CALL DLARFB( 'Left', 'Transpose', 'Forward',
  291. $ 'Columnwise', M-J+1, IB, NB,
  292. $ A( J, J ), LDA, WORK(J), LBWORK,
  293. $ A( J, I ), LDA, WORK(LBWORK*NB+NT*NT+1),
  294. $ IB)
  295. 20 CONTINUE
  296. *
  297. * Compute the QR factorization of the current block
  298. * A(I:M,I:I+IB-1)
  299. *
  300. CALL DGEQR2( M-I+1, IB, A( I, I ), LDA, TAU( I ),
  301. $ WORK(LBWORK*NB+NT*NT+1), IINFO )
  302. IF( I+IB.LE.N ) THEN
  303. *
  304. * Form the triangular factor of the block reflector
  305. * H = H(i) H(i+1) . . . H(i+ib-1)
  306. *
  307. CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB,
  308. $ A( I, I ), LDA, TAU( I ),
  309. $ WORK(I), LBWORK )
  310. *
  311. END IF
  312. 10 CONTINUE
  313. ELSE
  314. I = 1
  315. END IF
  316. *
  317. * Use unblocked code to factor the last or only block.
  318. *
  319. IF( I.LE.K ) THEN
  320. IF ( I .NE. 1 ) THEN
  321. DO 30 J = 1, I - NB, NB
  322. *
  323. * Apply H' to A(J:M,I:K) from the left
  324. *
  325. CALL DLARFB( 'Left', 'Transpose', 'Forward',
  326. $ 'Columnwise', M-J+1, K-I+1, NB,
  327. $ A( J, J ), LDA, WORK(J), LBWORK,
  328. $ A( J, I ), LDA, WORK(LBWORK*NB+NT*NT+1),
  329. $ K-I+1)
  330. 30 CONTINUE
  331. CALL DGEQR2( M-I+1, K-I+1, A( I, I ), LDA, TAU( I ),
  332. $ WORK(LBWORK*NB+NT*NT+1),IINFO )
  333. ELSE
  334. *
  335. * Use unblocked code to factor the last or only block.
  336. *
  337. CALL DGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ),
  338. $ WORK,IINFO )
  339. END IF
  340. END IF
  341. *
  342. * Apply update to the column M+1:N when N > M
  343. *
  344. IF ( M.LT.N .AND. I.NE.1) THEN
  345. *
  346. * Form the last triangular factor of the block reflector
  347. * H = H(i) H(i+1) . . . H(i+ib-1)
  348. *
  349. IF ( NT .LE. NB ) THEN
  350. CALL DLARFT( 'Forward', 'Columnwise', M-I+1, K-I+1,
  351. $ A( I, I ), LDA, TAU( I ), WORK(I), LBWORK )
  352. ELSE
  353. CALL DLARFT( 'Forward', 'Columnwise', M-I+1, K-I+1,
  354. $ A( I, I ), LDA, TAU( I ),
  355. $ WORK(LBWORK*NB+1), NT )
  356. END IF
  357. *
  358. * Apply H' to A(1:M,M+1:N) from the left
  359. *
  360. DO 40 J = 1, K-NX, NB
  361. IB = MIN( K-J+1, NB )
  362. CALL DLARFB( 'Left', 'Transpose', 'Forward',
  363. $ 'Columnwise', M-J+1, N-M, IB,
  364. $ A( J, J ), LDA, WORK(J), LBWORK,
  365. $ A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
  366. $ N-M)
  367. 40 CONTINUE
  368. IF ( NT.LE.NB ) THEN
  369. CALL DLARFB( 'Left', 'Transpose', 'Forward',
  370. $ 'Columnwise', M-J+1, N-M, K-J+1,
  371. $ A( J, J ), LDA, WORK(J), LBWORK,
  372. $ A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
  373. $ N-M)
  374. ELSE
  375. CALL DLARFB( 'Left', 'Transpose', 'Forward',
  376. $ 'Columnwise', M-J+1, N-M, K-J+1,
  377. $ A( J, J ), LDA,
  378. $ WORK(LBWORK*NB+1),
  379. $ NT, A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
  380. $ N-M)
  381. END IF
  382. END IF
  383. WORK( 1 ) = IWS
  384. RETURN
  385. *
  386. * End of DGEQRF
  387. *
  388. END