You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpotrf.f 6.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. C> \brief \b DPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DPOTRF ( UPLO, N, A, LDA, INFO )
  12. *
  13. * .. Scalar Arguments ..
  14. * CHARACTER UPLO
  15. * INTEGER INFO, LDA, N
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION A( LDA, * )
  19. * ..
  20. *
  21. * Purpose
  22. * =======
  23. *
  24. C>\details \b Purpose:
  25. C>\verbatim
  26. C>
  27. C> DPOTRF computes the Cholesky factorization of a real symmetric
  28. C> positive definite matrix A.
  29. C>
  30. C> The factorization has the form
  31. C> A = U**T * U, if UPLO = 'U', or
  32. C> A = L * L**T, if UPLO = 'L',
  33. C> where U is an upper triangular matrix and L is lower triangular.
  34. C>
  35. C> This is the right looking block version of the algorithm, calling Level 3 BLAS.
  36. C>
  37. C>\endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. C> \param[in] UPLO
  43. C> \verbatim
  44. C> UPLO is CHARACTER*1
  45. C> = 'U': Upper triangle of A is stored;
  46. C> = 'L': Lower triangle of A is stored.
  47. C> \endverbatim
  48. C>
  49. C> \param[in] N
  50. C> \verbatim
  51. C> N is INTEGER
  52. C> The order of the matrix A. N >= 0.
  53. C> \endverbatim
  54. C>
  55. C> \param[in,out] A
  56. C> \verbatim
  57. C> A is DOUBLE PRECISION array, dimension (LDA,N)
  58. C> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  59. C> N-by-N upper triangular part of A contains the upper
  60. C> triangular part of the matrix A, and the strictly lower
  61. C> triangular part of A is not referenced. If UPLO = 'L', the
  62. C> leading N-by-N lower triangular part of A contains the lower
  63. C> triangular part of the matrix A, and the strictly upper
  64. C> triangular part of A is not referenced.
  65. C> \endverbatim
  66. C> \verbatim
  67. C> On exit, if INFO = 0, the factor U or L from the Cholesky
  68. C> factorization A = U**T*U or A = L*L**T.
  69. C> \endverbatim
  70. C>
  71. C> \param[in] LDA
  72. C> \verbatim
  73. C> LDA is INTEGER
  74. C> The leading dimension of the array A. LDA >= max(1,N).
  75. C> \endverbatim
  76. C>
  77. C> \param[out] INFO
  78. C> \verbatim
  79. C> INFO is INTEGER
  80. C> = 0: successful exit
  81. C> < 0: if INFO = -i, the i-th argument had an illegal value
  82. C> > 0: if INFO = i, the leading minor of order i is not
  83. C> positive definite, and the factorization could not be
  84. C> completed.
  85. C> \endverbatim
  86. C>
  87. *
  88. * Authors:
  89. * ========
  90. *
  91. C> \author Univ. of Tennessee
  92. C> \author Univ. of California Berkeley
  93. C> \author Univ. of Colorado Denver
  94. C> \author NAG Ltd.
  95. *
  96. C> \date November 2011
  97. *
  98. C> \ingroup variantsPOcomputational
  99. *
  100. * =====================================================================
  101. SUBROUTINE DPOTRF ( UPLO, N, A, LDA, INFO )
  102. *
  103. * -- LAPACK computational routine (version 3.1) --
  104. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  105. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  106. * November 2011
  107. *
  108. * .. Scalar Arguments ..
  109. CHARACTER UPLO
  110. INTEGER INFO, LDA, N
  111. * ..
  112. * .. Array Arguments ..
  113. DOUBLE PRECISION A( LDA, * )
  114. * ..
  115. *
  116. * =====================================================================
  117. *
  118. * .. Parameters ..
  119. DOUBLE PRECISION ONE
  120. PARAMETER ( ONE = 1.0D+0 )
  121. * ..
  122. * .. Local Scalars ..
  123. LOGICAL UPPER
  124. INTEGER J, JB, NB
  125. * ..
  126. * .. External Functions ..
  127. LOGICAL LSAME
  128. INTEGER ILAENV
  129. EXTERNAL LSAME, ILAENV
  130. * ..
  131. * .. External Subroutines ..
  132. EXTERNAL DGEMM, DPOTF2, DSYRK, DTRSM, XERBLA
  133. * ..
  134. * .. Intrinsic Functions ..
  135. INTRINSIC MAX, MIN
  136. * ..
  137. * .. Executable Statements ..
  138. *
  139. * Test the input parameters.
  140. *
  141. INFO = 0
  142. UPPER = LSAME( UPLO, 'U' )
  143. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  144. INFO = -1
  145. ELSE IF( N.LT.0 ) THEN
  146. INFO = -2
  147. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  148. INFO = -4
  149. END IF
  150. IF( INFO.NE.0 ) THEN
  151. CALL XERBLA( 'DPOTRF', -INFO )
  152. RETURN
  153. END IF
  154. *
  155. * Quick return if possible
  156. *
  157. IF( N.EQ.0 )
  158. $ RETURN
  159. *
  160. * Determine the block size for this environment.
  161. *
  162. NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
  163. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  164. *
  165. * Use unblocked code.
  166. *
  167. CALL DPOTF2( UPLO, N, A, LDA, INFO )
  168. ELSE
  169. *
  170. * Use blocked code.
  171. *
  172. IF( UPPER ) THEN
  173. *
  174. * Compute the Cholesky factorization A = U'*U.
  175. *
  176. DO 10 J = 1, N, NB
  177. *
  178. * Update and factorize the current diagonal block and test
  179. * for non-positive-definiteness.
  180. *
  181. JB = MIN( NB, N-J+1 )
  182. CALL DPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
  183. IF( INFO.NE.0 )
  184. $ GO TO 30
  185. IF( J+JB.LE.N ) THEN
  186. *
  187. * Updating the trailing submatrix.
  188. *
  189. CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit',
  190. $ JB, N-J-JB+1, ONE, A( J, J ), LDA,
  191. $ A( J, J+JB ), LDA )
  192. CALL DSYRK( 'Upper', 'Transpose', N-J-JB+1, JB, -ONE,
  193. $ A( J, J+JB ), LDA,
  194. $ ONE, A( J+JB, J+JB ), LDA )
  195. END IF
  196. 10 CONTINUE
  197. *
  198. ELSE
  199. *
  200. * Compute the Cholesky factorization A = L*L'.
  201. *
  202. DO 20 J = 1, N, NB
  203. *
  204. * Update and factorize the current diagonal block and test
  205. * for non-positive-definiteness.
  206. *
  207. JB = MIN( NB, N-J+1 )
  208. CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
  209. IF( INFO.NE.0 )
  210. $ GO TO 30
  211. IF( J+JB.LE.N ) THEN
  212. *
  213. * Updating the trailing submatrix.
  214. *
  215. CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
  216. $ N-J-JB+1, JB, ONE, A( J, J ), LDA,
  217. $ A( J+JB, J ), LDA )
  218. CALL DSYRK( 'Lower', 'No Transpose', N-J-JB+1, JB,
  219. $ -ONE, A( J+JB, J ), LDA,
  220. $ ONE, A( J+JB, J+JB ), LDA )
  221. END IF
  222. 20 CONTINUE
  223. END IF
  224. END IF
  225. GO TO 40
  226. *
  227. 30 CONTINUE
  228. INFO = INFO + J - 1
  229. *
  230. 40 CONTINUE
  231. RETURN
  232. *
  233. * End of DPOTRF
  234. *
  235. END