You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

level3_thread.c 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. // #define TIMING 1
  39. #ifndef CACHE_LINE_SIZE
  40. #define CACHE_LINE_SIZE 8
  41. #endif
  42. #ifndef DIVIDE_RATE
  43. #define DIVIDE_RATE 2
  44. #endif
  45. #ifndef SWITCH_RATIO
  46. #define SWITCH_RATIO 2
  47. #endif
  48. //The array of job_t may overflow the stack.
  49. //Instead, use malloc to alloc job_t.
  50. #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
  51. #define USE_ALLOC_HEAP
  52. #endif
  53. #ifndef GEMM_LOCAL
  54. #if defined(NN)
  55. #define GEMM_LOCAL GEMM_NN
  56. #elif defined(NT)
  57. #define GEMM_LOCAL GEMM_NT
  58. #elif defined(NR)
  59. #define GEMM_LOCAL GEMM_NR
  60. #elif defined(NC)
  61. #define GEMM_LOCAL GEMM_NC
  62. #elif defined(TN)
  63. #define GEMM_LOCAL GEMM_TN
  64. #elif defined(TT)
  65. #define GEMM_LOCAL GEMM_TT
  66. #elif defined(TR)
  67. #define GEMM_LOCAL GEMM_TR
  68. #elif defined(TC)
  69. #define GEMM_LOCAL GEMM_TC
  70. #elif defined(RN)
  71. #define GEMM_LOCAL GEMM_RN
  72. #elif defined(RT)
  73. #define GEMM_LOCAL GEMM_RT
  74. #elif defined(RR)
  75. #define GEMM_LOCAL GEMM_RR
  76. #elif defined(RC)
  77. #define GEMM_LOCAL GEMM_RC
  78. #elif defined(CN)
  79. #define GEMM_LOCAL GEMM_CN
  80. #elif defined(CT)
  81. #define GEMM_LOCAL GEMM_CT
  82. #elif defined(CR)
  83. #define GEMM_LOCAL GEMM_CR
  84. #elif defined(CC)
  85. #define GEMM_LOCAL GEMM_CC
  86. #endif
  87. #endif
  88. typedef struct {
  89. volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  90. } job_t;
  91. #ifndef BETA_OPERATION
  92. #ifndef COMPLEX
  93. #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
  94. GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
  95. BETA[0], NULL, 0, NULL, 0, \
  96. (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
  97. #else
  98. #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
  99. GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
  100. BETA[0], BETA[1], NULL, 0, NULL, 0, \
  101. (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
  102. #endif
  103. #endif
  104. #ifndef ICOPY_OPERATION
  105. #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
  106. defined(RN) || defined(RT) || defined(RC) || defined(RR)
  107. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  108. #else
  109. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  110. #endif
  111. #endif
  112. #ifndef OCOPY_OPERATION
  113. #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
  114. defined(NR) || defined(TR) || defined(CR) || defined(RR)
  115. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  116. #else
  117. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  118. #endif
  119. #endif
  120. #ifndef KERNEL_FUNC
  121. #if defined(NN) || defined(NT) || defined(TN) || defined(TT)
  122. #define KERNEL_FUNC GEMM_KERNEL_N
  123. #endif
  124. #if defined(CN) || defined(CT) || defined(RN) || defined(RT)
  125. #define KERNEL_FUNC GEMM_KERNEL_L
  126. #endif
  127. #if defined(NC) || defined(TC) || defined(NR) || defined(TR)
  128. #define KERNEL_FUNC GEMM_KERNEL_R
  129. #endif
  130. #if defined(CC) || defined(CR) || defined(RC) || defined(RR)
  131. #define KERNEL_FUNC GEMM_KERNEL_B
  132. #endif
  133. #endif
  134. #ifndef KERNEL_OPERATION
  135. #ifndef COMPLEX
  136. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  137. KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  138. #else
  139. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  140. KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  141. #endif
  142. #endif
  143. #ifndef FUSED_KERNEL_OPERATION
  144. #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
  145. defined(NR) || defined(TR) || defined(CR) || defined(RR)
  146. #ifndef COMPLEX
  147. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  148. FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
  149. (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  150. #else
  151. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  152. FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
  153. (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  154. #endif
  155. #else
  156. #ifndef COMPLEX
  157. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  158. FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
  159. (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  160. #else
  161. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  162. FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
  163. (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  164. #endif
  165. #endif
  166. #endif
  167. #ifndef A
  168. #define A args -> a
  169. #endif
  170. #ifndef LDA
  171. #define LDA args -> lda
  172. #endif
  173. #ifndef B
  174. #define B args -> b
  175. #endif
  176. #ifndef LDB
  177. #define LDB args -> ldb
  178. #endif
  179. #ifndef C
  180. #define C args -> c
  181. #endif
  182. #ifndef LDC
  183. #define LDC args -> ldc
  184. #endif
  185. #ifndef M
  186. #define M args -> m
  187. #endif
  188. #ifndef N
  189. #define N args -> n
  190. #endif
  191. #ifndef K
  192. #define K args -> k
  193. #endif
  194. #ifdef TIMING
  195. #define START_RPCC() rpcc_counter = rpcc()
  196. #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
  197. #else
  198. #define START_RPCC()
  199. #define STOP_RPCC(COUNTER)
  200. #endif
  201. static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  202. FLOAT *buffer[DIVIDE_RATE];
  203. BLASLONG k, lda, ldb, ldc;
  204. BLASLONG m_from, m_to, n_from, n_to, N_from, N_to;
  205. FLOAT *alpha, *beta;
  206. FLOAT *a, *b, *c;
  207. job_t *job = (job_t *)args -> common;
  208. BLASLONG xxx, bufferside;
  209. BLASLONG ls, min_l, jjs, min_jj;
  210. BLASLONG is, min_i, div_n;
  211. BLASLONG i, current;
  212. BLASLONG l1stride, l2size;
  213. #ifdef TIMING
  214. #ifdef ARMV7
  215. unsigned long long rpcc_counter;
  216. unsigned long long copy_A = 0;
  217. unsigned long long copy_B = 0;
  218. unsigned long long kernel = 0;
  219. unsigned long long waiting1 = 0;
  220. unsigned long long waiting2 = 0;
  221. unsigned long long waiting3 = 0;
  222. unsigned long long waiting6[MAX_CPU_NUMBER];
  223. unsigned long long ops = 0;
  224. #else
  225. BLASULONG rpcc_counter;
  226. BLASULONG copy_A = 0;
  227. BLASULONG copy_B = 0;
  228. BLASULONG kernel = 0;
  229. BLASULONG waiting1 = 0;
  230. BLASULONG waiting2 = 0;
  231. BLASULONG waiting3 = 0;
  232. BLASULONG waiting6[MAX_CPU_NUMBER];
  233. BLASULONG ops = 0;
  234. #endif
  235. for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0;
  236. #endif
  237. k = K;
  238. a = (FLOAT *)A;
  239. b = (FLOAT *)B;
  240. c = (FLOAT *)C;
  241. lda = LDA;
  242. ldb = LDB;
  243. ldc = LDC;
  244. alpha = (FLOAT *)args -> alpha;
  245. beta = (FLOAT *)args -> beta;
  246. m_from = 0;
  247. m_to = M;
  248. if (range_m) {
  249. m_from = range_m[0];
  250. m_to = range_m[1];
  251. }
  252. n_from = 0;
  253. n_to = N;
  254. N_from = 0;
  255. N_to = N;
  256. if (range_n) {
  257. n_from = range_n[mypos + 0];
  258. n_to = range_n[mypos + 1];
  259. N_from = range_n[0];
  260. N_to = range_n[args -> nthreads];
  261. }
  262. if (beta) {
  263. #ifndef COMPLEX
  264. if (beta[0] != ONE)
  265. #else
  266. if ((beta[0] != ONE) || (beta[1] != ZERO))
  267. #endif
  268. BETA_OPERATION(m_from, m_to, N_from, N_to, beta, c, ldc);
  269. }
  270. if ((k == 0) || (alpha == NULL)) return 0;
  271. if ((alpha[0] == ZERO)
  272. #ifdef COMPLEX
  273. && (alpha[1] == ZERO)
  274. #endif
  275. ) return 0;
  276. l2size = GEMM_P * GEMM_Q;
  277. #if 0
  278. fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld N_from : %ld N_to : %ld\n",
  279. mypos, m_from, m_to, n_from, n_to, N_from, N_to);
  280. fprintf(stderr, "GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R);
  281. #endif
  282. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  283. buffer[0] = sb;
  284. for (i = 1; i < DIVIDE_RATE; i++) {
  285. buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE;
  286. }
  287. for(ls = 0; ls < k; ls += min_l){
  288. min_l = k - ls;
  289. #ifdef ARMV7_1
  290. if (min_l >= GEMM_Q / 4 * 2) {
  291. min_l = GEMM_Q / 4;
  292. } else {
  293. if (min_l > GEMM_Q / 4) min_l = (min_l + 1) / 2;
  294. }
  295. #else
  296. if (min_l >= GEMM_Q * 2) {
  297. min_l = GEMM_Q;
  298. } else {
  299. if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
  300. }
  301. #endif
  302. l1stride = 1;
  303. min_i = m_to - m_from;
  304. #ifdef ARMV7_1
  305. if (min_i >= GEMM_P / 4 * 2) {
  306. min_i = GEMM_P / 4;
  307. } else {
  308. if (min_i > GEMM_P / 4) {
  309. min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
  310. } else {
  311. if (args -> nthreads == 1) l1stride = 0;
  312. }
  313. }
  314. #else
  315. if (min_i >= GEMM_P * 2) {
  316. min_i = GEMM_P;
  317. } else {
  318. if (min_i > GEMM_P) {
  319. min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
  320. } else {
  321. if (args -> nthreads == 1) l1stride = 0;
  322. }
  323. }
  324. #endif
  325. START_RPCC();
  326. ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
  327. STOP_RPCC(copy_A);
  328. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  329. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  330. START_RPCC();
  331. /* Make sure if no one is using buffer */
  332. for (i = 0; i < args -> nthreads; i++)
  333. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
  334. STOP_RPCC(waiting1);
  335. #if defined(FUSED_GEMM) && !defined(TIMING)
  336. FUSED_KERNEL_OPERATION(min_i, MIN(n_to, xxx + div_n) - xxx, min_l, alpha,
  337. sa, buffer[bufferside], b, ldb, c, ldc, m_from, xxx, ls);
  338. #else
  339. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  340. min_jj = MIN(n_to, xxx + div_n) - jjs;
  341. #if defined(BULLDOZER) && defined(ARCH_X86_64) && !defined(XDOUBLE) && !defined(COMPLEX)
  342. if (min_jj >= 12*GEMM_UNROLL_N) min_jj = 12*GEMM_UNROLL_N;
  343. else
  344. if (min_jj >= 6*GEMM_UNROLL_N) min_jj = 6*GEMM_UNROLL_N;
  345. else
  346. if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N;
  347. else
  348. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  349. #elif defined(ARMV7)
  350. if (min_jj >= 16) min_jj = 16;
  351. else
  352. if (min_jj >= 8) min_jj = 8;
  353. else
  354. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  355. #else
  356. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  357. #endif
  358. START_RPCC();
  359. OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
  360. buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride);
  361. STOP_RPCC(copy_B);
  362. START_RPCC();
  363. KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
  364. sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride,
  365. c, ldc, m_from, jjs);
  366. STOP_RPCC(kernel);
  367. #ifdef TIMING
  368. ops += 2 * min_i * min_jj * min_l;
  369. #endif
  370. }
  371. #endif
  372. for (i = 0; i < args -> nthreads; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  373. WMB;
  374. }
  375. current = mypos;
  376. do {
  377. current ++;
  378. if (current >= args -> nthreads) current = 0;
  379. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  380. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  381. if (current != mypos) {
  382. START_RPCC();
  383. /* thread has to wait */
  384. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
  385. STOP_RPCC(waiting2);
  386. START_RPCC();
  387. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  388. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  389. c, ldc, m_from, xxx);
  390. STOP_RPCC(kernel);
  391. #ifdef TIMING
  392. ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
  393. #endif
  394. }
  395. if (m_to - m_from == min_i) {
  396. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  397. }
  398. }
  399. } while (current != mypos);
  400. for(is = m_from + min_i; is < m_to; is += min_i){
  401. min_i = m_to - is;
  402. if (min_i >= GEMM_P * 2) {
  403. min_i = GEMM_P;
  404. } else
  405. if (min_i > GEMM_P) {
  406. min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
  407. }
  408. START_RPCC();
  409. ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
  410. STOP_RPCC(copy_A);
  411. current = mypos;
  412. do {
  413. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  414. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  415. START_RPCC();
  416. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  417. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  418. c, ldc, is, xxx);
  419. STOP_RPCC(kernel);
  420. #ifdef TIMING
  421. ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
  422. #endif
  423. if (is + min_i >= m_to) {
  424. /* Thread doesn't need this buffer any more */
  425. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  426. WMB;
  427. }
  428. }
  429. current ++;
  430. if (current >= args -> nthreads) current = 0;
  431. } while (current != mypos);
  432. }
  433. }
  434. START_RPCC();
  435. for (i = 0; i < args -> nthreads; i++) {
  436. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  437. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
  438. }
  439. }
  440. STOP_RPCC(waiting3);
  441. #ifdef TIMING
  442. #ifdef ARMV7
  443. unsigned long long waiting = waiting1 + waiting2 + waiting3;
  444. unsigned long long total = copy_A + copy_B + kernel + waiting;
  445. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
  446. mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
  447. (double)waiting1 /(double)total * 100.,
  448. (double)waiting2 /(double)total * 100.,
  449. (double)waiting3 /(double)total * 100.,
  450. (double)kernel /(double)total * 100.);
  451. #else
  452. BLASLONG waiting = waiting1 + waiting2 + waiting3;
  453. BLASLONG total = copy_A + copy_B + kernel + waiting;
  454. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
  455. mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
  456. (double)waiting1 /(double)total * 100.,
  457. (double)waiting2 /(double)total * 100.,
  458. (double)waiting3 /(double)total * 100.,
  459. (double)ops/(double)kernel / 4. * 100.);
  460. #endif
  461. #if 0
  462. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n",
  463. mypos, copy_A, copy_B, waiting);
  464. fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n",
  465. mypos,
  466. (double)waiting1/(double)waiting * 100.,
  467. (double)waiting2/(double)waiting * 100.,
  468. (double)waiting3/(double)waiting * 100.);
  469. #endif
  470. fprintf(stderr, "\n");
  471. #endif
  472. return 0;
  473. }
  474. static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
  475. *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  476. blas_arg_t newarg;
  477. #ifndef USE_ALLOC_HEAP
  478. job_t job[MAX_CPU_NUMBER];
  479. #else
  480. job_t * job = NULL;
  481. #endif
  482. blas_queue_t queue[MAX_CPU_NUMBER];
  483. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  484. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  485. BLASLONG num_cpu_m, num_cpu_n;
  486. BLASLONG nthreads = args -> nthreads;
  487. BLASLONG width, i, j, k, js;
  488. BLASLONG m, n, n_from, n_to;
  489. int mode;
  490. #ifndef COMPLEX
  491. #ifdef XDOUBLE
  492. mode = BLAS_XDOUBLE | BLAS_REAL | BLAS_NODE;
  493. #elif defined(DOUBLE)
  494. mode = BLAS_DOUBLE | BLAS_REAL | BLAS_NODE;
  495. #else
  496. mode = BLAS_SINGLE | BLAS_REAL | BLAS_NODE;
  497. #endif
  498. #else
  499. #ifdef XDOUBLE
  500. mode = BLAS_XDOUBLE | BLAS_COMPLEX | BLAS_NODE;
  501. #elif defined(DOUBLE)
  502. mode = BLAS_DOUBLE | BLAS_COMPLEX | BLAS_NODE;
  503. #else
  504. mode = BLAS_SINGLE | BLAS_COMPLEX | BLAS_NODE;
  505. #endif
  506. #endif
  507. newarg.m = args -> m;
  508. newarg.n = args -> n;
  509. newarg.k = args -> k;
  510. newarg.a = args -> a;
  511. newarg.b = args -> b;
  512. newarg.c = args -> c;
  513. newarg.lda = args -> lda;
  514. newarg.ldb = args -> ldb;
  515. newarg.ldc = args -> ldc;
  516. newarg.alpha = args -> alpha;
  517. newarg.beta = args -> beta;
  518. newarg.nthreads = args -> nthreads;
  519. #ifdef USE_ALLOC_HEAP
  520. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  521. if(job==NULL){
  522. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  523. exit(1);
  524. }
  525. #endif
  526. newarg.common = (void *)job;
  527. #ifdef PARAMTEST
  528. newarg.gemm_p = args -> gemm_p;
  529. newarg.gemm_q = args -> gemm_q;
  530. newarg.gemm_r = args -> gemm_r;
  531. #endif
  532. if (!range_m) {
  533. range_M[0] = 0;
  534. m = args -> m;
  535. } else {
  536. range_M[0] = range_m[0];
  537. m = range_m[1] - range_m[0];
  538. }
  539. num_cpu_m = 0;
  540. while (m > 0){
  541. width = blas_quickdivide(m + nthreads - num_cpu_m - 1, nthreads - num_cpu_m);
  542. m -= width;
  543. if (m < 0) width = width + m;
  544. range_M[num_cpu_m + 1] = range_M[num_cpu_m] + width;
  545. num_cpu_m ++;
  546. }
  547. for (i = 0; i < num_cpu_m; i++) {
  548. queue[i].mode = mode;
  549. queue[i].routine = inner_thread;
  550. queue[i].args = &newarg;
  551. queue[i].range_m = &range_M[i];
  552. queue[i].range_n = &range_N[0];
  553. queue[i].sa = NULL;
  554. queue[i].sb = NULL;
  555. queue[i].next = &queue[i + 1];
  556. }
  557. queue[0].sa = sa;
  558. queue[0].sb = sb;
  559. if (!range_n) {
  560. n_from = 0;
  561. n_to = args -> n;
  562. } else {
  563. n_from = range_n[0];
  564. n_to = range_n[1];
  565. }
  566. for(js = n_from; js < n_to; js += GEMM_R * nthreads){
  567. n = n_to - js;
  568. if (n > GEMM_R * nthreads) n = GEMM_R * nthreads;
  569. range_N[0] = js;
  570. num_cpu_n = 0;
  571. while (n > 0){
  572. width = blas_quickdivide(n + nthreads - num_cpu_n - 1, nthreads - num_cpu_n);
  573. n -= width;
  574. if (n < 0) width = width + n;
  575. range_N[num_cpu_n + 1] = range_N[num_cpu_n] + width;
  576. num_cpu_n ++;
  577. }
  578. for (j = 0; j < num_cpu_m; j++) {
  579. for (i = 0; i < num_cpu_m; i++) {
  580. for (k = 0; k < DIVIDE_RATE; k++) {
  581. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  582. }
  583. }
  584. }
  585. queue[num_cpu_m - 1].next = NULL;
  586. exec_blas(num_cpu_m, queue);
  587. }
  588. #ifdef USE_ALLOC_HEAP
  589. free(job);
  590. #endif
  591. return 0;
  592. }
  593. int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  594. BLASLONG m = args -> m;
  595. BLASLONG n = args -> n;
  596. BLASLONG nthreads = args -> nthreads;
  597. BLASLONG divN, divT;
  598. int mode;
  599. if (nthreads == 1) {
  600. GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
  601. return 0;
  602. }
  603. if (range_m) {
  604. BLASLONG m_from = *(((BLASLONG *)range_m) + 0);
  605. BLASLONG m_to = *(((BLASLONG *)range_m) + 1);
  606. m = m_to - m_from;
  607. }
  608. if (range_n) {
  609. BLASLONG n_from = *(((BLASLONG *)range_n) + 0);
  610. BLASLONG n_to = *(((BLASLONG *)range_n) + 1);
  611. n = n_to - n_from;
  612. }
  613. if ((args -> m < nthreads * SWITCH_RATIO) || (args -> n < nthreads * SWITCH_RATIO)) {
  614. GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
  615. return 0;
  616. }
  617. divT = nthreads;
  618. divN = 1;
  619. #if 0
  620. while ((GEMM_P * divT > m * SWITCH_RATIO) && (divT > 1)) {
  621. do {
  622. divT --;
  623. divN = 1;
  624. while (divT * divN < nthreads) divN ++;
  625. } while ((divT * divN != nthreads) && (divT > 1));
  626. }
  627. #endif
  628. // fprintf(stderr, "divN = %4ld divT = %4ld\n", divN, divT);
  629. args -> nthreads = divT;
  630. if (divN == 1){
  631. gemm_driver(args, range_m, range_n, sa, sb, 0);
  632. } else {
  633. #ifndef COMPLEX
  634. #ifdef XDOUBLE
  635. mode = BLAS_XDOUBLE | BLAS_REAL;
  636. #elif defined(DOUBLE)
  637. mode = BLAS_DOUBLE | BLAS_REAL;
  638. #else
  639. mode = BLAS_SINGLE | BLAS_REAL;
  640. #endif
  641. #else
  642. #ifdef XDOUBLE
  643. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  644. #elif defined(DOUBLE)
  645. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  646. #else
  647. mode = BLAS_SINGLE | BLAS_COMPLEX;
  648. #endif
  649. #endif
  650. #if defined(TN) || defined(TT) || defined(TR) || defined(TC) || \
  651. defined(CN) || defined(CT) || defined(CR) || defined(CC)
  652. mode |= (BLAS_TRANSA_T);
  653. #endif
  654. #if defined(NT) || defined(TT) || defined(RT) || defined(CT) || \
  655. defined(NC) || defined(TC) || defined(RC) || defined(CC)
  656. mode |= (BLAS_TRANSB_T);
  657. #endif
  658. #ifdef OS_WINDOWS
  659. gemm_thread_n(mode, args, range_m, range_n, GEMM_LOCAL, sa, sb, divN);
  660. #else
  661. gemm_thread_n(mode, args, range_m, range_n, gemm_driver, sa, sb, divN);
  662. #endif
  663. }
  664. return 0;
  665. }