You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

spr2_thread.c 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include <stdlib.h>
  40. #include "common.h"
  41. static int syr_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){
  42. FLOAT *a, *x, *y;
  43. BLASLONG lda, incx, incy;
  44. BLASLONG i, m_from, m_to;
  45. FLOAT alpha_r;
  46. #ifdef COMPLEX
  47. FLOAT alpha_i;
  48. #endif
  49. x = (FLOAT *)args -> a;
  50. y = (FLOAT *)args -> b;
  51. a = (FLOAT *)args -> c;
  52. incx = args -> lda;
  53. incy = args -> ldb;
  54. lda = args -> ldc;
  55. alpha_r = *((FLOAT *)args -> alpha + 0);
  56. #ifdef COMPLEX
  57. alpha_i = *((FLOAT *)args -> alpha + 1);
  58. #endif
  59. m_from = 0;
  60. m_to = args -> m;
  61. if (range_m) {
  62. m_from = *(range_m + 0);
  63. m_to = *(range_m + 1);
  64. }
  65. if (incx != 1) {
  66. #ifndef LOWER
  67. COPY_K(m_to, x, incx, buffer, 1);
  68. #else
  69. COPY_K(args -> m - m_from, x + m_from * incx * COMPSIZE, incx, buffer + m_from * COMPSIZE, 1);
  70. #endif
  71. x = buffer;
  72. buffer += ((COMPSIZE * args -> m + 1023) & ~1023);
  73. }
  74. if (incy != 1) {
  75. #ifndef LOWER
  76. COPY_K(m_to, y, incy, buffer, 1);
  77. #else
  78. COPY_K(args -> m - m_from, y + m_from * incy * COMPSIZE, incy, buffer + m_from * COMPSIZE, 1);
  79. #endif
  80. y = buffer;
  81. }
  82. #ifndef LOWER
  83. a += (m_from + 1) * m_from / 2 * COMPSIZE;
  84. #else
  85. a += (2 * args -> m - m_from + 1) * m_from / 2 * COMPSIZE;
  86. #endif
  87. for (i = m_from; i < m_to; i++){
  88. #if !defined(HEMV) && !defined(HEMVREV)
  89. #ifndef COMPLEX
  90. if (x[i] != ZERO) {
  91. #ifndef LOWER
  92. AXPYU_K(i + 1, 0, 0, alpha_r * x[i], y, 1, a, 1, NULL, 0);
  93. #else
  94. AXPYU_K(args -> m - i, 0, 0, alpha_r * x[i], y + i, 1, a, 1, NULL, 0);
  95. #endif
  96. }
  97. if (y[i] != ZERO) {
  98. #ifndef LOWER
  99. AXPYU_K(i + 1, 0, 0, alpha_r * y[i], x, 1, a, 1, NULL, 0);
  100. #else
  101. AXPYU_K(args -> m - i, 0, 0, alpha_r * y[i], x + i, 1, a, 1, NULL, 0);
  102. #endif
  103. }
  104. #else
  105. if ((x[i * COMPSIZE + 0] != ZERO) || (x[i * COMPSIZE + 1] != ZERO)) {
  106. #ifndef LOWER
  107. AXPYU_K(i + 1, 0, 0,
  108. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  109. alpha_i * x[i * COMPSIZE + 0] + alpha_r * x[i * COMPSIZE + 1],
  110. y, 1, a, 1, NULL, 0);
  111. #else
  112. AXPYU_K(args -> m - i, 0, 0,
  113. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  114. alpha_i * x[i * COMPSIZE + 0] + alpha_r * x[i * COMPSIZE + 1],
  115. y + i * COMPSIZE, 1, a, 1, NULL, 0);
  116. #endif
  117. }
  118. if ((y[i * COMPSIZE + 0] != ZERO) || (y[i * COMPSIZE + 1] != ZERO)) {
  119. #ifndef LOWER
  120. AXPYU_K(i + 1, 0, 0,
  121. alpha_r * y[i * COMPSIZE + 0] - alpha_i * y[i * COMPSIZE + 1],
  122. alpha_i * y[i * COMPSIZE + 0] + alpha_r * y[i * COMPSIZE + 1],
  123. x, 1, a, 1, NULL, 0);
  124. #else
  125. AXPYU_K(args -> m - i, 0, 0,
  126. alpha_r * y[i * COMPSIZE + 0] - alpha_i * y[i * COMPSIZE + 1],
  127. alpha_i * y[i * COMPSIZE + 0] + alpha_r * y[i * COMPSIZE + 1],
  128. x + i * COMPSIZE, 1, a, 1, NULL, 0);
  129. #endif
  130. }
  131. #endif
  132. #else
  133. if ((x[i * COMPSIZE + 0] != ZERO) || (x[i * COMPSIZE + 1] != ZERO)) {
  134. #ifndef HEMVREV
  135. #ifndef LOWER
  136. AXPYU_K(i + 1, 0, 0,
  137. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  138. - alpha_i * x[i * COMPSIZE + 0] - alpha_r * x[i * COMPSIZE + 1],
  139. y, 1, a, 1, NULL, 0);
  140. #else
  141. AXPYU_K(args -> m - i, 0, 0,
  142. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  143. - alpha_i * x[i * COMPSIZE + 0] - alpha_r * x[i * COMPSIZE + 1],
  144. y + i * COMPSIZE, 1, a, 1, NULL, 0);
  145. #endif
  146. #else
  147. #ifndef LOWER
  148. AXPYC_K(i + 1, 0, 0,
  149. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  150. alpha_i * x[i * COMPSIZE + 0] + alpha_r * x[i * COMPSIZE + 1],
  151. y, 1, a, 1, NULL, 0);
  152. #else
  153. AXPYC_K(args -> m - i, 0, 0,
  154. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  155. alpha_i * x[i * COMPSIZE + 0] + alpha_r * x[i * COMPSIZE + 1],
  156. y + i * COMPSIZE, 1, a, 1, NULL, 0);
  157. #endif
  158. #endif
  159. }
  160. if ((y[i * COMPSIZE + 0] != ZERO) || (y[i * COMPSIZE + 1] != ZERO)) {
  161. #ifndef HEMVREV
  162. #ifndef LOWER
  163. AXPYU_K(i + 1, 0, 0,
  164. alpha_r * y[i * COMPSIZE + 0] + alpha_i * y[i * COMPSIZE + 1],
  165. alpha_i * y[i * COMPSIZE + 0] - alpha_r * y[i * COMPSIZE + 1],
  166. x, 1, a, 1, NULL, 0);
  167. #else
  168. AXPYU_K(args -> m - i, 0, 0,
  169. alpha_r * y[i * COMPSIZE + 0] + alpha_i * y[i * COMPSIZE + 1],
  170. alpha_i * y[i * COMPSIZE + 0] - alpha_r * y[i * COMPSIZE + 1],
  171. x + i * COMPSIZE, 1, a, 1, NULL, 0);
  172. #endif
  173. #else
  174. #ifndef LOWER
  175. AXPYC_K(i + 1, 0, 0,
  176. alpha_r * y[i * COMPSIZE + 0] + alpha_i * y[i * COMPSIZE + 1],
  177. - alpha_i * y[i * COMPSIZE + 0] + alpha_r * y[i * COMPSIZE + 1],
  178. x, 1, a, 1, NULL, 0);
  179. #else
  180. AXPYC_K(args -> m - i, 0, 0,
  181. alpha_r * y[i * COMPSIZE + 0] + alpha_i * y[i * COMPSIZE + 1],
  182. - alpha_i * y[i * COMPSIZE + 0] + alpha_r * y[i * COMPSIZE + 1],
  183. x + i * COMPSIZE, 1, a, 1, NULL, 0);
  184. #endif
  185. #endif
  186. }
  187. #ifndef LOWER
  188. a[i * COMPSIZE + 1] = ZERO;
  189. #else
  190. a[ 1] = ZERO;
  191. #endif
  192. #endif
  193. #ifndef LOWER
  194. a += (i + 1) * COMPSIZE;
  195. #else
  196. a += (args -> m - i) * COMPSIZE;
  197. #endif
  198. }
  199. return 0;
  200. }
  201. #ifndef COMPLEX
  202. int CNAME(BLASLONG m, FLOAT alpha, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *a, FLOAT *buffer, int nthreads){
  203. #else
  204. int CNAME(BLASLONG m, FLOAT *alpha, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *a, FLOAT *buffer, int nthreads){
  205. #endif
  206. blas_arg_t args;
  207. blas_queue_t queue[MAX_CPU_NUMBER];
  208. BLASLONG range_m[MAX_CPU_NUMBER + 1];
  209. BLASLONG width, i, num_cpu;
  210. double dnum;
  211. int mask = 7;
  212. #ifdef SMP
  213. #ifndef COMPLEX
  214. #ifdef XDOUBLE
  215. int mode = BLAS_XDOUBLE | BLAS_REAL;
  216. #elif defined(DOUBLE)
  217. int mode = BLAS_DOUBLE | BLAS_REAL;
  218. #else
  219. int mode = BLAS_SINGLE | BLAS_REAL;
  220. #endif
  221. #else
  222. #ifdef XDOUBLE
  223. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  224. #elif defined(DOUBLE)
  225. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  226. #else
  227. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  228. #endif
  229. #endif
  230. #endif
  231. args.m = m;
  232. args.a = (void *)x;
  233. args.b = (void *)y;
  234. args.c = (void *)a;
  235. args.lda = incx;
  236. args.ldb = incy;
  237. #ifndef COMPLEX
  238. args.alpha = (void *)&alpha;
  239. #else
  240. args.alpha = (void *)alpha;
  241. #endif
  242. dnum = (double)m * (double)m / (double)nthreads;
  243. num_cpu = 0;
  244. #ifndef LOWER
  245. range_m[MAX_CPU_NUMBER] = m;
  246. i = 0;
  247. while (i < m){
  248. if (nthreads - num_cpu > 1) {
  249. double di = (double)(m - i);
  250. if (di * di - dnum > 0) {
  251. width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
  252. } else {
  253. width = m - i;
  254. }
  255. if (width < 16) width = 16;
  256. if (width > m - i) width = m - i;
  257. } else {
  258. width = m - i;
  259. }
  260. range_m[MAX_CPU_NUMBER - num_cpu - 1] = range_m[MAX_CPU_NUMBER - num_cpu] - width;
  261. queue[num_cpu].mode = mode;
  262. queue[num_cpu].routine = syr_kernel;
  263. queue[num_cpu].args = &args;
  264. queue[num_cpu].range_m = &range_m[MAX_CPU_NUMBER - num_cpu - 1];
  265. queue[num_cpu].range_n = NULL;
  266. queue[num_cpu].sa = NULL;
  267. queue[num_cpu].sb = NULL;
  268. queue[num_cpu].next = &queue[num_cpu + 1];
  269. num_cpu ++;
  270. i += width;
  271. }
  272. #else
  273. range_m[0] = 0;
  274. i = 0;
  275. while (i < m){
  276. if (nthreads - num_cpu > 1) {
  277. double di = (double)(m - i);
  278. if (di * di - dnum > 0) {
  279. width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
  280. } else {
  281. width = m - i;
  282. }
  283. if (width < 16) width = 16;
  284. if (width > m - i) width = m - i;
  285. } else {
  286. width = m - i;
  287. }
  288. range_m[num_cpu + 1] = range_m[num_cpu] + width;
  289. queue[num_cpu].mode = mode;
  290. queue[num_cpu].routine = syr_kernel;
  291. queue[num_cpu].args = &args;
  292. queue[num_cpu].range_m = &range_m[num_cpu];
  293. queue[num_cpu].range_n = NULL;
  294. queue[num_cpu].sa = NULL;
  295. queue[num_cpu].sb = NULL;
  296. queue[num_cpu].next = &queue[num_cpu + 1];
  297. num_cpu ++;
  298. i += width;
  299. }
  300. #endif
  301. if (num_cpu) {
  302. queue[0].sa = NULL;
  303. queue[0].sb = buffer;
  304. queue[num_cpu - 1].next = NULL;
  305. exec_blas(num_cpu, queue);
  306. }
  307. return 0;
  308. }