- /*********************************************************************/
- /* Copyright 2009, 2010 The University of Texas at Austin. */
- /* Copyright 2025 The OpenBLAS Project. */
- /* All rights reserved. */
- /* */
- /* Redistribution and use in source and binary forms, with or */
- /* without modification, are permitted provided that the following */
- /* conditions are met: */
- /* */
- /* 1. Redistributions of source code must retain the above */
- /* copyright notice, this list of conditions and the following */
- /* disclaimer. */
- /* */
- /* 2. Redistributions in binary form must reproduce the above */
- /* copyright notice, this list of conditions and the following */
- /* disclaimer in the documentation and/or other materials */
- /* provided with the distribution. */
- /* */
- /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
- /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
- /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
- /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
- /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
- /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
- /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
- /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
- /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
- /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
- /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
- /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
- /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
- /* POSSIBILITY OF SUCH DAMAGE. */
- /* */
- /* The views and conclusions contained in the software and */
- /* documentation are those of the authors and should not be */
- /* interpreted as representing official policies, either expressed */
- /* or implied, of The University of Texas at Austin. */
- /*********************************************************************/
-
- /* This file is a template for level 3 operation */
-
- #ifndef BETA_OPERATION
- #if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
- #ifndef COMPLEX
- #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
- GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
- BETA[0], NULL, 0, NULL, 0, \
- (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
- #else
- #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
- GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
- BETA[0], BETA[1], NULL, 0, NULL, 0, \
- (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
- #endif
- #else
- #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
- GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
- BETA, NULL, 0, NULL, 0, \
- (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
- #endif
- #endif
-
- #ifndef ICOPY_OPERATION
- #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
- defined(RN) || defined(RT) || defined(RC) || defined(RR)
- #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (IFLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #else
- #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (IFLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #endif
- #endif
-
- #ifndef OCOPY_OPERATION
- #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
- defined(NR) || defined(TR) || defined(CR) || defined(RR)
- #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (IFLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #else
- #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (IFLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
- #endif
- #endif
-
- #ifndef KERNEL_FUNC
- #if defined(NN) || defined(NT) || defined(TN) || defined(TT)
- #define KERNEL_FUNC GEMM_KERNEL_N
- #endif
- #if defined(CN) || defined(CT) || defined(RN) || defined(RT)
- #define KERNEL_FUNC GEMM_KERNEL_L
- #endif
- #if defined(NC) || defined(TC) || defined(NR) || defined(TR)
- #define KERNEL_FUNC GEMM_KERNEL_R
- #endif
- #if defined(CC) || defined(CR) || defined(RC) || defined(RR)
- #define KERNEL_FUNC GEMM_KERNEL_B
- #endif
- #endif
-
- #ifndef KERNEL_OPERATION
- #if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
- #ifndef COMPLEX
- #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
- KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
- #else
- #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
- KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
- #endif
- #else
- #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
- KERNEL_FUNC(M, N, K, ALPHA, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
- #endif
- #endif
-
- #ifndef FUSED_KERNEL_OPERATION
- #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
- defined(NR) || defined(TR) || defined(CR) || defined(RR)
- #ifndef COMPLEX
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
- (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
- #else
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
- (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
-
- #endif
- #else
- #ifndef COMPLEX
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
- (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
- #else
- #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
- FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
- (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
- #endif
- #endif
- #endif
-
- #ifndef A
- #define A args -> a
- #endif
- #ifndef LDA
- #define LDA args -> lda
- #endif
- #ifndef B
- #define B args -> b
- #endif
- #ifndef LDB
- #define LDB args -> ldb
- #endif
- #ifndef C
- #define C args -> c
- #endif
- #ifndef LDC
- #define LDC args -> ldc
- #endif
- #ifndef M
- #define M args -> m
- #endif
- #ifndef N
- #define N args -> n
- #endif
- #ifndef K
- #define K args -> k
- #endif
-
- #ifdef TIMING
- #define START_RPCC() rpcc_counter = rpcc()
- #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
- #else
- #define START_RPCC()
- #define STOP_RPCC(COUNTER)
- #endif
-
- int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
- XFLOAT *sa, XFLOAT *sb, BLASLONG dummy){
- BLASLONG k, lda, ldb, ldc;
- FLOAT *alpha, *beta;
- IFLOAT *a, *b;
- FLOAT *c;
- BLASLONG m_from, m_to, n_from, n_to;
-
- BLASLONG ls, is, js;
- BLASLONG min_l, min_i, min_j;
- #if !defined(FUSED_GEMM) || defined(TIMING)
- BLASLONG jjs, min_jj;
- #endif
-
- BLASLONG l1stride, gemm_p, l2size;
-
- #if defined(XDOUBLE) && defined(QUAD_PRECISION)
- xidouble xalpha;
- #endif
-
- #ifdef TIMING
- unsigned long long rpcc_counter;
- unsigned long long innercost = 0;
- unsigned long long outercost = 0;
- unsigned long long kernelcost = 0;
- double total;
- #endif
-
- k = K;
-
- a = (IFLOAT *)A;
- b = (IFLOAT *)B;
- c = (FLOAT *)C;
-
- lda = LDA;
- ldb = LDB;
- ldc = LDC;
-
- alpha = (FLOAT *)args -> alpha;
- beta = (FLOAT *)args -> beta;
-
- m_from = 0;
- m_to = M;
-
- if (range_m) {
- m_from = *(((BLASLONG *)range_m) + 0);
- m_to = *(((BLASLONG *)range_m) + 1);
- }
-
- n_from = 0;
- n_to = N;
-
- if (range_n) {
- n_from = *(((BLASLONG *)range_n) + 0);
- n_to = *(((BLASLONG *)range_n) + 1);
- }
-
- if (beta) {
- #if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
- #ifndef COMPLEX
- if (beta[0] != ONE
- #else
- if ((beta[0] != ONE) || (beta[1] != ZERO)
- #endif
- #else
- if (((beta[0].x[1] != 0x3fff000000000000UL) || beta[0].x[0] != 0)
- #ifdef COMPLEX
- &&(((beta[1].x[0] | beta[1].x[1]) << 1) != 0)
- #endif
- #endif
- ) {
- #if defined(XDOUBLE) && defined(QUAD_PRECISION)
- xidouble xbeta;
-
- qtox(&xbeta, beta);
- #endif
- BETA_OPERATION(m_from, m_to, n_from, n_to, beta, c, ldc);
- }
- }
-
- if ((k == 0) || (alpha == NULL)) return 0;
-
- #if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
- if ( alpha[0] == ZERO
- #ifdef COMPLEX
- && alpha[1] == ZERO
- #endif
- ) return 0;
- #else
- if (((alpha[0].x[0] | alpha[0].x[1]
- #ifdef COMPLEX
- | alpha[1].x[0] | alpha[1].x[1]
- #endif
- ) << 1) == 0) return 0;
- #endif
-
- #if defined(XDOUBLE) && defined(QUAD_PRECISION)
- qtox(&xalpha, alpha);
- #endif
-
- l2size = GEMM_P * GEMM_Q;
-
- #if 0
- fprintf(stderr, "GEMM(Single): M_from : %ld M_to : %ld N_from : %ld N_to : %ld k : %ld\n", m_from, m_to, n_from, n_to, k);
- fprintf(stderr, "GEMM(Single):: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R);
- // fprintf(stderr, "GEMM: SA .. %p SB .. %p\n", sa, sb);
-
- // fprintf(stderr, "A = %p B = %p C = %p\n\tlda = %ld ldb = %ld ldc = %ld\n", a, b, c, lda, ldb, ldc);
- #endif
-
- #ifdef TIMING
- innercost = 0;
- outercost = 0;
- kernelcost = 0;
- #endif
-
- for(js = n_from; js < n_to; js += GEMM_R){
- min_j = n_to - js;
- if (min_j > GEMM_R) min_j = GEMM_R;
-
- for(ls = 0; ls < k; ls += min_l){
-
- min_l = k - ls;
-
- if (min_l >= GEMM_Q * 2) {
- // gemm_p = GEMM_P;
- min_l = GEMM_Q;
- } else {
- if (min_l > GEMM_Q) {
- min_l = ((min_l / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
- }
- gemm_p = ((l2size / min_l + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
- while (gemm_p * min_l > l2size) gemm_p -= GEMM_UNROLL_M;
- }
-
- BLASLONG pad_min_l = min_l;
- #if defined(BFLOAT16)
- #if defined(DYNAMIC_ARCH)
- pad_min_l = (min_l + gotoblas->sbgemm_align_k - 1) & ~(gotoblas->sbgemm_align_k-1);
- #else
- pad_min_l = (min_l + SBGEMM_ALIGN_K - 1) & ~(SBGEMM_ALIGN_K - 1);;
- #endif
- #endif
-
- /* First, we have to move data A to L2 cache */
- min_i = m_to - m_from;
- l1stride = 1;
-
- if (min_i >= GEMM_P * 2) {
- min_i = GEMM_P;
- } else {
- if (min_i > GEMM_P) {
- min_i = ((min_i / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
- } else {
- l1stride = 0;
- }
- }
-
- START_RPCC();
-
- ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
-
- STOP_RPCC(innercost);
-
- #if defined(FUSED_GEMM) && !defined(TIMING)
-
- FUSED_KERNEL_OPERATION(min_i, min_j, min_l, alpha,
- sa, sb, b, ldb, c, ldc, m_from, js, ls);
-
-
- #else
- for(jjs = js; jjs < js + min_j; jjs += min_jj){
- min_jj = min_j + js - jjs;
- #if defined(SKYLAKEX) || defined(COOPERLAKE) || defined(SAPPHIRERAPIDS)
- /* the current AVX512 s/d/c/z GEMM kernel requires n>=6*GEMM_UNROLL_N to achieve best performance */
- if (min_jj >= 6*GEMM_UNROLL_N) min_jj = 6*GEMM_UNROLL_N;
- #else
- if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N;
- else
- /*
- if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N;
- else
- */
- if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
- #endif
-
-
- START_RPCC();
-
- OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
- sb + pad_min_l * (jjs - js) * COMPSIZE * l1stride);
-
- STOP_RPCC(outercost);
-
- START_RPCC();
-
- #if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
- KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
- sa, sb + pad_min_l * (jjs - js) * COMPSIZE * l1stride, c, ldc, m_from, jjs);
- #else
- KERNEL_OPERATION(min_i, min_jj, min_l, (void *)&xalpha,
- sa, sb + pad_min_l * (jjs - js) * COMPSIZE * l1stride, c, ldc, m_from, jjs);
- #endif
-
- STOP_RPCC(kernelcost);
- }
- #endif
-
- for(is = m_from + min_i; is < m_to; is += min_i){
- min_i = m_to - is;
-
- if (min_i >= GEMM_P * 2) {
- min_i = GEMM_P;
- } else
- if (min_i > GEMM_P) {
- min_i = ((min_i / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
- }
-
- START_RPCC();
-
- ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
-
- STOP_RPCC(innercost);
-
- START_RPCC();
-
- #if !defined(XDOUBLE) || !defined(QUAD_PRECISION)
- KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb, c, ldc, is, js);
- #else
- KERNEL_OPERATION(min_i, min_j, min_l, (void *)&xalpha, sa, sb, c, ldc, is, js);
- #endif
-
- STOP_RPCC(kernelcost);
-
- } /* end of is */
- } /* end of js */
- } /* end of ls */
-
-
- #ifdef TIMING
- total = (double)outercost + (double)innercost + (double)kernelcost;
-
- printf( "Copy A : %5.2f Copy B: %5.2f Kernel : %5.2f kernel Effi. : %5.2f Total Effi. : %5.2f\n",
- innercost / total * 100., outercost / total * 100.,
- kernelcost / total * 100.,
- (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / (double)kernelcost * 100. * (double)COMPSIZE / 2.,
- (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / total * 100. * (double)COMPSIZE / 2.);
-
- #endif
-
- return 0;
- }
|