You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgbbrd.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570
  1. *> \brief \b ZGBBRD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGBBRD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbbrd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbbrd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbbrd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
  22. * LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER VECT
  26. * INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION D( * ), E( * ), RWORK( * )
  30. * COMPLEX*16 AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
  31. * $ Q( LDQ, * ), WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZGBBRD reduces a complex general m-by-n band matrix A to real upper
  41. *> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
  42. *>
  43. *> The routine computes B, and optionally forms Q or P**H, or computes
  44. *> Q**H*C for a given matrix C.
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] VECT
  51. *> \verbatim
  52. *> VECT is CHARACTER*1
  53. *> Specifies whether or not the matrices Q and P**H are to be
  54. *> formed.
  55. *> = 'N': do not form Q or P**H;
  56. *> = 'Q': form Q only;
  57. *> = 'P': form P**H only;
  58. *> = 'B': form both.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] M
  62. *> \verbatim
  63. *> M is INTEGER
  64. *> The number of rows of the matrix A. M >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The number of columns of the matrix A. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] NCC
  74. *> \verbatim
  75. *> NCC is INTEGER
  76. *> The number of columns of the matrix C. NCC >= 0.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] KL
  80. *> \verbatim
  81. *> KL is INTEGER
  82. *> The number of subdiagonals of the matrix A. KL >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] KU
  86. *> \verbatim
  87. *> KU is INTEGER
  88. *> The number of superdiagonals of the matrix A. KU >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] AB
  92. *> \verbatim
  93. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  94. *> On entry, the m-by-n band matrix A, stored in rows 1 to
  95. *> KL+KU+1. The j-th column of A is stored in the j-th column of
  96. *> the array AB as follows:
  97. *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
  98. *> On exit, A is overwritten by values generated during the
  99. *> reduction.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDAB
  103. *> \verbatim
  104. *> LDAB is INTEGER
  105. *> The leading dimension of the array A. LDAB >= KL+KU+1.
  106. *> \endverbatim
  107. *>
  108. *> \param[out] D
  109. *> \verbatim
  110. *> D is DOUBLE PRECISION array, dimension (min(M,N))
  111. *> The diagonal elements of the bidiagonal matrix B.
  112. *> \endverbatim
  113. *>
  114. *> \param[out] E
  115. *> \verbatim
  116. *> E is DOUBLE PRECISION array, dimension (min(M,N)-1)
  117. *> The superdiagonal elements of the bidiagonal matrix B.
  118. *> \endverbatim
  119. *>
  120. *> \param[out] Q
  121. *> \verbatim
  122. *> Q is COMPLEX*16 array, dimension (LDQ,M)
  123. *> If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
  124. *> If VECT = 'N' or 'P', the array Q is not referenced.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDQ
  128. *> \verbatim
  129. *> LDQ is INTEGER
  130. *> The leading dimension of the array Q.
  131. *> LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
  132. *> \endverbatim
  133. *>
  134. *> \param[out] PT
  135. *> \verbatim
  136. *> PT is COMPLEX*16 array, dimension (LDPT,N)
  137. *> If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
  138. *> If VECT = 'N' or 'Q', the array PT is not referenced.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDPT
  142. *> \verbatim
  143. *> LDPT is INTEGER
  144. *> The leading dimension of the array PT.
  145. *> LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
  146. *> \endverbatim
  147. *>
  148. *> \param[in,out] C
  149. *> \verbatim
  150. *> C is COMPLEX*16 array, dimension (LDC,NCC)
  151. *> On entry, an m-by-ncc matrix C.
  152. *> On exit, C is overwritten by Q**H*C.
  153. *> C is not referenced if NCC = 0.
  154. *> \endverbatim
  155. *>
  156. *> \param[in] LDC
  157. *> \verbatim
  158. *> LDC is INTEGER
  159. *> The leading dimension of the array C.
  160. *> LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] WORK
  164. *> \verbatim
  165. *> WORK is COMPLEX*16 array, dimension (max(M,N))
  166. *> \endverbatim
  167. *>
  168. *> \param[out] RWORK
  169. *> \verbatim
  170. *> RWORK is DOUBLE PRECISION array, dimension (max(M,N))
  171. *> \endverbatim
  172. *>
  173. *> \param[out] INFO
  174. *> \verbatim
  175. *> INFO is INTEGER
  176. *> = 0: successful exit.
  177. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  178. *> \endverbatim
  179. *
  180. * Authors:
  181. * ========
  182. *
  183. *> \author Univ. of Tennessee
  184. *> \author Univ. of California Berkeley
  185. *> \author Univ. of Colorado Denver
  186. *> \author NAG Ltd.
  187. *
  188. *> \ingroup complex16GBcomputational
  189. *
  190. * =====================================================================
  191. SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
  192. $ LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
  193. *
  194. * -- LAPACK computational routine --
  195. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  196. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  197. *
  198. * .. Scalar Arguments ..
  199. CHARACTER VECT
  200. INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
  201. * ..
  202. * .. Array Arguments ..
  203. DOUBLE PRECISION D( * ), E( * ), RWORK( * )
  204. COMPLEX*16 AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
  205. $ Q( LDQ, * ), WORK( * )
  206. * ..
  207. *
  208. * =====================================================================
  209. *
  210. * .. Parameters ..
  211. DOUBLE PRECISION ZERO
  212. PARAMETER ( ZERO = 0.0D+0 )
  213. COMPLEX*16 CZERO, CONE
  214. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  215. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  216. * ..
  217. * .. Local Scalars ..
  218. LOGICAL WANTB, WANTC, WANTPT, WANTQ
  219. INTEGER I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
  220. $ KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT
  221. DOUBLE PRECISION ABST, RC
  222. COMPLEX*16 RA, RB, RS, T
  223. * ..
  224. * .. External Subroutines ..
  225. EXTERNAL XERBLA, ZLARGV, ZLARTG, ZLARTV, ZLASET, ZROT,
  226. $ ZSCAL
  227. * ..
  228. * .. Intrinsic Functions ..
  229. INTRINSIC ABS, DCONJG, MAX, MIN
  230. * ..
  231. * .. External Functions ..
  232. LOGICAL LSAME
  233. EXTERNAL LSAME
  234. * ..
  235. * .. Executable Statements ..
  236. *
  237. * Test the input parameters
  238. *
  239. WANTB = LSAME( VECT, 'B' )
  240. WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
  241. WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
  242. WANTC = NCC.GT.0
  243. KLU1 = KL + KU + 1
  244. INFO = 0
  245. IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
  246. $ THEN
  247. INFO = -1
  248. ELSE IF( M.LT.0 ) THEN
  249. INFO = -2
  250. ELSE IF( N.LT.0 ) THEN
  251. INFO = -3
  252. ELSE IF( NCC.LT.0 ) THEN
  253. INFO = -4
  254. ELSE IF( KL.LT.0 ) THEN
  255. INFO = -5
  256. ELSE IF( KU.LT.0 ) THEN
  257. INFO = -6
  258. ELSE IF( LDAB.LT.KLU1 ) THEN
  259. INFO = -8
  260. ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
  261. INFO = -12
  262. ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN
  263. INFO = -14
  264. ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN
  265. INFO = -16
  266. END IF
  267. IF( INFO.NE.0 ) THEN
  268. CALL XERBLA( 'ZGBBRD', -INFO )
  269. RETURN
  270. END IF
  271. *
  272. * Initialize Q and P**H to the unit matrix, if needed
  273. *
  274. IF( WANTQ )
  275. $ CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, LDQ )
  276. IF( WANTPT )
  277. $ CALL ZLASET( 'Full', N, N, CZERO, CONE, PT, LDPT )
  278. *
  279. * Quick return if possible.
  280. *
  281. IF( M.EQ.0 .OR. N.EQ.0 )
  282. $ RETURN
  283. *
  284. MINMN = MIN( M, N )
  285. *
  286. IF( KL+KU.GT.1 ) THEN
  287. *
  288. * Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
  289. * first to lower bidiagonal form and then transform to upper
  290. * bidiagonal
  291. *
  292. IF( KU.GT.0 ) THEN
  293. ML0 = 1
  294. MU0 = 2
  295. ELSE
  296. ML0 = 2
  297. MU0 = 1
  298. END IF
  299. *
  300. * Wherever possible, plane rotations are generated and applied in
  301. * vector operations of length NR over the index set J1:J2:KLU1.
  302. *
  303. * The complex sines of the plane rotations are stored in WORK,
  304. * and the real cosines in RWORK.
  305. *
  306. KLM = MIN( M-1, KL )
  307. KUN = MIN( N-1, KU )
  308. KB = KLM + KUN
  309. KB1 = KB + 1
  310. INCA = KB1*LDAB
  311. NR = 0
  312. J1 = KLM + 2
  313. J2 = 1 - KUN
  314. *
  315. DO 90 I = 1, MINMN
  316. *
  317. * Reduce i-th column and i-th row of matrix to bidiagonal form
  318. *
  319. ML = KLM + 1
  320. MU = KUN + 1
  321. DO 80 KK = 1, KB
  322. J1 = J1 + KB
  323. J2 = J2 + KB
  324. *
  325. * generate plane rotations to annihilate nonzero elements
  326. * which have been created below the band
  327. *
  328. IF( NR.GT.0 )
  329. $ CALL ZLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
  330. $ WORK( J1 ), KB1, RWORK( J1 ), KB1 )
  331. *
  332. * apply plane rotations from the left
  333. *
  334. DO 10 L = 1, KB
  335. IF( J2-KLM+L-1.GT.N ) THEN
  336. NRT = NR - 1
  337. ELSE
  338. NRT = NR
  339. END IF
  340. IF( NRT.GT.0 )
  341. $ CALL ZLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA,
  342. $ AB( KLU1-L+1, J1-KLM+L-1 ), INCA,
  343. $ RWORK( J1 ), WORK( J1 ), KB1 )
  344. 10 CONTINUE
  345. *
  346. IF( ML.GT.ML0 ) THEN
  347. IF( ML.LE.M-I+1 ) THEN
  348. *
  349. * generate plane rotation to annihilate a(i+ml-1,i)
  350. * within the band, and apply rotation from the left
  351. *
  352. CALL ZLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ),
  353. $ RWORK( I+ML-1 ), WORK( I+ML-1 ), RA )
  354. AB( KU+ML-1, I ) = RA
  355. IF( I.LT.N )
  356. $ CALL ZROT( MIN( KU+ML-2, N-I ),
  357. $ AB( KU+ML-2, I+1 ), LDAB-1,
  358. $ AB( KU+ML-1, I+1 ), LDAB-1,
  359. $ RWORK( I+ML-1 ), WORK( I+ML-1 ) )
  360. END IF
  361. NR = NR + 1
  362. J1 = J1 - KB1
  363. END IF
  364. *
  365. IF( WANTQ ) THEN
  366. *
  367. * accumulate product of plane rotations in Q
  368. *
  369. DO 20 J = J1, J2, KB1
  370. CALL ZROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1,
  371. $ RWORK( J ), DCONJG( WORK( J ) ) )
  372. 20 CONTINUE
  373. END IF
  374. *
  375. IF( WANTC ) THEN
  376. *
  377. * apply plane rotations to C
  378. *
  379. DO 30 J = J1, J2, KB1
  380. CALL ZROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC,
  381. $ RWORK( J ), WORK( J ) )
  382. 30 CONTINUE
  383. END IF
  384. *
  385. IF( J2+KUN.GT.N ) THEN
  386. *
  387. * adjust J2 to keep within the bounds of the matrix
  388. *
  389. NR = NR - 1
  390. J2 = J2 - KB1
  391. END IF
  392. *
  393. DO 40 J = J1, J2, KB1
  394. *
  395. * create nonzero element a(j-1,j+ku) above the band
  396. * and store it in WORK(n+1:2*n)
  397. *
  398. WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN )
  399. AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN )
  400. 40 CONTINUE
  401. *
  402. * generate plane rotations to annihilate nonzero elements
  403. * which have been generated above the band
  404. *
  405. IF( NR.GT.0 )
  406. $ CALL ZLARGV( NR, AB( 1, J1+KUN-1 ), INCA,
  407. $ WORK( J1+KUN ), KB1, RWORK( J1+KUN ),
  408. $ KB1 )
  409. *
  410. * apply plane rotations from the right
  411. *
  412. DO 50 L = 1, KB
  413. IF( J2+L-1.GT.M ) THEN
  414. NRT = NR - 1
  415. ELSE
  416. NRT = NR
  417. END IF
  418. IF( NRT.GT.0 )
  419. $ CALL ZLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA,
  420. $ AB( L, J1+KUN ), INCA,
  421. $ RWORK( J1+KUN ), WORK( J1+KUN ), KB1 )
  422. 50 CONTINUE
  423. *
  424. IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN
  425. IF( MU.LE.N-I+1 ) THEN
  426. *
  427. * generate plane rotation to annihilate a(i,i+mu-1)
  428. * within the band, and apply rotation from the right
  429. *
  430. CALL ZLARTG( AB( KU-MU+3, I+MU-2 ),
  431. $ AB( KU-MU+2, I+MU-1 ),
  432. $ RWORK( I+MU-1 ), WORK( I+MU-1 ), RA )
  433. AB( KU-MU+3, I+MU-2 ) = RA
  434. CALL ZROT( MIN( KL+MU-2, M-I ),
  435. $ AB( KU-MU+4, I+MU-2 ), 1,
  436. $ AB( KU-MU+3, I+MU-1 ), 1,
  437. $ RWORK( I+MU-1 ), WORK( I+MU-1 ) )
  438. END IF
  439. NR = NR + 1
  440. J1 = J1 - KB1
  441. END IF
  442. *
  443. IF( WANTPT ) THEN
  444. *
  445. * accumulate product of plane rotations in P**H
  446. *
  447. DO 60 J = J1, J2, KB1
  448. CALL ZROT( N, PT( J+KUN-1, 1 ), LDPT,
  449. $ PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ),
  450. $ DCONJG( WORK( J+KUN ) ) )
  451. 60 CONTINUE
  452. END IF
  453. *
  454. IF( J2+KB.GT.M ) THEN
  455. *
  456. * adjust J2 to keep within the bounds of the matrix
  457. *
  458. NR = NR - 1
  459. J2 = J2 - KB1
  460. END IF
  461. *
  462. DO 70 J = J1, J2, KB1
  463. *
  464. * create nonzero element a(j+kl+ku,j+ku-1) below the
  465. * band and store it in WORK(1:n)
  466. *
  467. WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN )
  468. AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN )
  469. 70 CONTINUE
  470. *
  471. IF( ML.GT.ML0 ) THEN
  472. ML = ML - 1
  473. ELSE
  474. MU = MU - 1
  475. END IF
  476. 80 CONTINUE
  477. 90 CONTINUE
  478. END IF
  479. *
  480. IF( KU.EQ.0 .AND. KL.GT.0 ) THEN
  481. *
  482. * A has been reduced to complex lower bidiagonal form
  483. *
  484. * Transform lower bidiagonal form to upper bidiagonal by applying
  485. * plane rotations from the left, overwriting superdiagonal
  486. * elements on subdiagonal elements
  487. *
  488. DO 100 I = 1, MIN( M-1, N )
  489. CALL ZLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA )
  490. AB( 1, I ) = RA
  491. IF( I.LT.N ) THEN
  492. AB( 2, I ) = RS*AB( 1, I+1 )
  493. AB( 1, I+1 ) = RC*AB( 1, I+1 )
  494. END IF
  495. IF( WANTQ )
  496. $ CALL ZROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC,
  497. $ DCONJG( RS ) )
  498. IF( WANTC )
  499. $ CALL ZROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC,
  500. $ RS )
  501. 100 CONTINUE
  502. ELSE
  503. *
  504. * A has been reduced to complex upper bidiagonal form or is
  505. * diagonal
  506. *
  507. IF( KU.GT.0 .AND. M.LT.N ) THEN
  508. *
  509. * Annihilate a(m,m+1) by applying plane rotations from the
  510. * right
  511. *
  512. RB = AB( KU, M+1 )
  513. DO 110 I = M, 1, -1
  514. CALL ZLARTG( AB( KU+1, I ), RB, RC, RS, RA )
  515. AB( KU+1, I ) = RA
  516. IF( I.GT.1 ) THEN
  517. RB = -DCONJG( RS )*AB( KU, I )
  518. AB( KU, I ) = RC*AB( KU, I )
  519. END IF
  520. IF( WANTPT )
  521. $ CALL ZROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT,
  522. $ RC, DCONJG( RS ) )
  523. 110 CONTINUE
  524. END IF
  525. END IF
  526. *
  527. * Make diagonal and superdiagonal elements real, storing them in D
  528. * and E
  529. *
  530. T = AB( KU+1, 1 )
  531. DO 120 I = 1, MINMN
  532. ABST = ABS( T )
  533. D( I ) = ABST
  534. IF( ABST.NE.ZERO ) THEN
  535. T = T / ABST
  536. ELSE
  537. T = CONE
  538. END IF
  539. IF( WANTQ )
  540. $ CALL ZSCAL( M, T, Q( 1, I ), 1 )
  541. IF( WANTC )
  542. $ CALL ZSCAL( NCC, DCONJG( T ), C( I, 1 ), LDC )
  543. IF( I.LT.MINMN ) THEN
  544. IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN
  545. E( I ) = ZERO
  546. T = AB( 1, I+1 )
  547. ELSE
  548. IF( KU.EQ.0 ) THEN
  549. T = AB( 2, I )*DCONJG( T )
  550. ELSE
  551. T = AB( KU, I+1 )*DCONJG( T )
  552. END IF
  553. ABST = ABS( T )
  554. E( I ) = ABST
  555. IF( ABST.NE.ZERO ) THEN
  556. T = T / ABST
  557. ELSE
  558. T = CONE
  559. END IF
  560. IF( WANTPT )
  561. $ CALL ZSCAL( N, T, PT( I+1, 1 ), LDPT )
  562. T = AB( KU+1, I+1 )*DCONJG( T )
  563. END IF
  564. END IF
  565. 120 CONTINUE
  566. RETURN
  567. *
  568. * End of ZGBBRD
  569. *
  570. END