You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasq2.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. *> \brief \b SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLASQ2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLASQ2( N, Z, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, N
  25. * ..
  26. * .. Array Arguments ..
  27. * REAL Z( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> SLASQ2 computes all the eigenvalues of the symmetric positive
  37. *> definite tridiagonal matrix associated with the qd array Z to high
  38. *> relative accuracy are computed to high relative accuracy, in the
  39. *> absence of denormalization, underflow and overflow.
  40. *>
  41. *> To see the relation of Z to the tridiagonal matrix, let L be a
  42. *> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
  43. *> let U be an upper bidiagonal matrix with 1's above and diagonal
  44. *> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
  45. *> symmetric tridiagonal to which it is similar.
  46. *>
  47. *> Note : SLASQ2 defines a logical variable, IEEE, which is true
  48. *> on machines which follow ieee-754 floating-point standard in their
  49. *> handling of infinities and NaNs, and false otherwise. This variable
  50. *> is passed to SLASQ3.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The number of rows and columns in the matrix. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in,out] Z
  63. *> \verbatim
  64. *> Z is REAL array, dimension ( 4*N )
  65. *> On entry Z holds the qd array. On exit, entries 1 to N hold
  66. *> the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
  67. *> trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
  68. *> N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
  69. *> holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
  70. *> shifts that failed.
  71. *> \endverbatim
  72. *>
  73. *> \param[out] INFO
  74. *> \verbatim
  75. *> INFO is INTEGER
  76. *> = 0: successful exit
  77. *> < 0: if the i-th argument is a scalar and had an illegal
  78. *> value, then INFO = -i, if the i-th argument is an
  79. *> array and the j-entry had an illegal value, then
  80. *> INFO = -(i*100+j)
  81. *> > 0: the algorithm failed
  82. *> = 1, a split was marked by a positive value in E
  83. *> = 2, current block of Z not diagonalized after 100*N
  84. *> iterations (in inner while loop). On exit Z holds
  85. *> a qd array with the same eigenvalues as the given Z.
  86. *> = 3, termination criterion of outer while loop not met
  87. *> (program created more than N unreduced blocks)
  88. *> \endverbatim
  89. *
  90. * Authors:
  91. * ========
  92. *
  93. *> \author Univ. of Tennessee
  94. *> \author Univ. of California Berkeley
  95. *> \author Univ. of Colorado Denver
  96. *> \author NAG Ltd.
  97. *
  98. *> \ingroup auxOTHERcomputational
  99. *
  100. *> \par Further Details:
  101. * =====================
  102. *>
  103. *> \verbatim
  104. *>
  105. *> Local Variables: I0:N0 defines a current unreduced segment of Z.
  106. *> The shifts are accumulated in SIGMA. Iteration count is in ITER.
  107. *> Ping-pong is controlled by PP (alternates between 0 and 1).
  108. *> \endverbatim
  109. *>
  110. * =====================================================================
  111. SUBROUTINE SLASQ2( N, Z, INFO )
  112. *
  113. * -- LAPACK computational routine --
  114. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  115. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  116. *
  117. * .. Scalar Arguments ..
  118. INTEGER INFO, N
  119. * ..
  120. * .. Array Arguments ..
  121. REAL Z( * )
  122. * ..
  123. *
  124. * =====================================================================
  125. *
  126. * .. Parameters ..
  127. REAL CBIAS
  128. PARAMETER ( CBIAS = 1.50E0 )
  129. REAL ZERO, HALF, ONE, TWO, FOUR, HUNDRD
  130. PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
  131. $ TWO = 2.0E0, FOUR = 4.0E0, HUNDRD = 100.0E0 )
  132. * ..
  133. * .. Local Scalars ..
  134. LOGICAL IEEE
  135. INTEGER I0, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, K,
  136. $ KMIN, N0, NBIG, NDIV, NFAIL, PP, SPLT, TTYPE,
  137. $ I1, N1
  138. REAL D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
  139. $ DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
  140. $ QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
  141. $ TOL2, TRACE, ZMAX, TEMPE, TEMPQ
  142. * ..
  143. * .. External Subroutines ..
  144. EXTERNAL SLASQ3, SLASRT, XERBLA
  145. * ..
  146. * .. External Functions ..
  147. REAL SLAMCH
  148. EXTERNAL SLAMCH
  149. * ..
  150. * .. Intrinsic Functions ..
  151. INTRINSIC ABS, MAX, MIN, REAL, SQRT
  152. * ..
  153. * .. Executable Statements ..
  154. *
  155. * Test the input arguments.
  156. * (in case SLASQ2 is not called by SLASQ1)
  157. *
  158. INFO = 0
  159. EPS = SLAMCH( 'Precision' )
  160. SAFMIN = SLAMCH( 'Safe minimum' )
  161. TOL = EPS*HUNDRD
  162. TOL2 = TOL**2
  163. *
  164. IF( N.LT.0 ) THEN
  165. INFO = -1
  166. CALL XERBLA( 'SLASQ2', 1 )
  167. RETURN
  168. ELSE IF( N.EQ.0 ) THEN
  169. RETURN
  170. ELSE IF( N.EQ.1 ) THEN
  171. *
  172. * 1-by-1 case.
  173. *
  174. IF( Z( 1 ).LT.ZERO ) THEN
  175. INFO = -201
  176. CALL XERBLA( 'SLASQ2', 2 )
  177. END IF
  178. RETURN
  179. ELSE IF( N.EQ.2 ) THEN
  180. *
  181. * 2-by-2 case.
  182. *
  183. IF( Z( 1 ).LT.ZERO ) THEN
  184. INFO = -201
  185. CALL XERBLA( 'SLASQ2', 2 )
  186. RETURN
  187. ELSE IF( Z( 2 ).LT.ZERO ) THEN
  188. INFO = -202
  189. CALL XERBLA( 'SLASQ2', 2 )
  190. RETURN
  191. ELSE IF( Z( 3 ).LT.ZERO ) THEN
  192. INFO = -203
  193. CALL XERBLA( 'SLASQ2', 2 )
  194. RETURN
  195. ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
  196. D = Z( 3 )
  197. Z( 3 ) = Z( 1 )
  198. Z( 1 ) = D
  199. END IF
  200. Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
  201. IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
  202. T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) )
  203. S = Z( 3 )*( Z( 2 ) / T )
  204. IF( S.LE.T ) THEN
  205. S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )
  206. ELSE
  207. S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
  208. END IF
  209. T = Z( 1 ) + ( S+Z( 2 ) )
  210. Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
  211. Z( 1 ) = T
  212. END IF
  213. Z( 2 ) = Z( 3 )
  214. Z( 6 ) = Z( 2 ) + Z( 1 )
  215. RETURN
  216. END IF
  217. *
  218. * Check for negative data and compute sums of q's and e's.
  219. *
  220. Z( 2*N ) = ZERO
  221. EMIN = Z( 2 )
  222. QMAX = ZERO
  223. ZMAX = ZERO
  224. D = ZERO
  225. E = ZERO
  226. *
  227. DO 10 K = 1, 2*( N-1 ), 2
  228. IF( Z( K ).LT.ZERO ) THEN
  229. INFO = -( 200+K )
  230. CALL XERBLA( 'SLASQ2', 2 )
  231. RETURN
  232. ELSE IF( Z( K+1 ).LT.ZERO ) THEN
  233. INFO = -( 200+K+1 )
  234. CALL XERBLA( 'SLASQ2', 2 )
  235. RETURN
  236. END IF
  237. D = D + Z( K )
  238. E = E + Z( K+1 )
  239. QMAX = MAX( QMAX, Z( K ) )
  240. EMIN = MIN( EMIN, Z( K+1 ) )
  241. ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
  242. 10 CONTINUE
  243. IF( Z( 2*N-1 ).LT.ZERO ) THEN
  244. INFO = -( 200+2*N-1 )
  245. CALL XERBLA( 'SLASQ2', 2 )
  246. RETURN
  247. END IF
  248. D = D + Z( 2*N-1 )
  249. QMAX = MAX( QMAX, Z( 2*N-1 ) )
  250. ZMAX = MAX( QMAX, ZMAX )
  251. *
  252. * Check for diagonality.
  253. *
  254. IF( E.EQ.ZERO ) THEN
  255. DO 20 K = 2, N
  256. Z( K ) = Z( 2*K-1 )
  257. 20 CONTINUE
  258. CALL SLASRT( 'D', N, Z, IINFO )
  259. Z( 2*N-1 ) = D
  260. RETURN
  261. END IF
  262. *
  263. TRACE = D + E
  264. *
  265. * Check for zero data.
  266. *
  267. IF( TRACE.EQ.ZERO ) THEN
  268. Z( 2*N-1 ) = ZERO
  269. RETURN
  270. END IF
  271. *
  272. * Check whether the machine is IEEE conformable.
  273. *
  274. * IEEE = ( ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 )
  275. *
  276. * [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with
  277. * some the test matrices of type 16. The double precision code is fine.
  278. *
  279. IEEE = .FALSE.
  280. *
  281. * Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
  282. *
  283. DO 30 K = 2*N, 2, -2
  284. Z( 2*K ) = ZERO
  285. Z( 2*K-1 ) = Z( K )
  286. Z( 2*K-2 ) = ZERO
  287. Z( 2*K-3 ) = Z( K-1 )
  288. 30 CONTINUE
  289. *
  290. I0 = 1
  291. N0 = N
  292. *
  293. * Reverse the qd-array, if warranted.
  294. *
  295. IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
  296. IPN4 = 4*( I0+N0 )
  297. DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
  298. TEMP = Z( I4-3 )
  299. Z( I4-3 ) = Z( IPN4-I4-3 )
  300. Z( IPN4-I4-3 ) = TEMP
  301. TEMP = Z( I4-1 )
  302. Z( I4-1 ) = Z( IPN4-I4-5 )
  303. Z( IPN4-I4-5 ) = TEMP
  304. 40 CONTINUE
  305. END IF
  306. *
  307. * Initial split checking via dqd and Li's test.
  308. *
  309. PP = 0
  310. *
  311. DO 80 K = 1, 2
  312. *
  313. D = Z( 4*N0+PP-3 )
  314. DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
  315. IF( Z( I4-1 ).LE.TOL2*D ) THEN
  316. Z( I4-1 ) = -ZERO
  317. D = Z( I4-3 )
  318. ELSE
  319. D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
  320. END IF
  321. 50 CONTINUE
  322. *
  323. * dqd maps Z to ZZ plus Li's test.
  324. *
  325. EMIN = Z( 4*I0+PP+1 )
  326. D = Z( 4*I0+PP-3 )
  327. DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
  328. Z( I4-2*PP-2 ) = D + Z( I4-1 )
  329. IF( Z( I4-1 ).LE.TOL2*D ) THEN
  330. Z( I4-1 ) = -ZERO
  331. Z( I4-2*PP-2 ) = D
  332. Z( I4-2*PP ) = ZERO
  333. D = Z( I4+1 )
  334. ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
  335. $ SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
  336. TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
  337. Z( I4-2*PP ) = Z( I4-1 )*TEMP
  338. D = D*TEMP
  339. ELSE
  340. Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
  341. D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
  342. END IF
  343. EMIN = MIN( EMIN, Z( I4-2*PP ) )
  344. 60 CONTINUE
  345. Z( 4*N0-PP-2 ) = D
  346. *
  347. * Now find qmax.
  348. *
  349. QMAX = Z( 4*I0-PP-2 )
  350. DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
  351. QMAX = MAX( QMAX, Z( I4 ) )
  352. 70 CONTINUE
  353. *
  354. * Prepare for the next iteration on K.
  355. *
  356. PP = 1 - PP
  357. 80 CONTINUE
  358. *
  359. * Initialise variables to pass to SLASQ3.
  360. *
  361. TTYPE = 0
  362. DMIN1 = ZERO
  363. DMIN2 = ZERO
  364. DN = ZERO
  365. DN1 = ZERO
  366. DN2 = ZERO
  367. G = ZERO
  368. TAU = ZERO
  369. *
  370. ITER = 2
  371. NFAIL = 0
  372. NDIV = 2*( N0-I0 )
  373. *
  374. DO 160 IWHILA = 1, N + 1
  375. IF( N0.LT.1 )
  376. $ GO TO 170
  377. *
  378. * While array unfinished do
  379. *
  380. * E(N0) holds the value of SIGMA when submatrix in I0:N0
  381. * splits from the rest of the array, but is negated.
  382. *
  383. DESIG = ZERO
  384. IF( N0.EQ.N ) THEN
  385. SIGMA = ZERO
  386. ELSE
  387. SIGMA = -Z( 4*N0-1 )
  388. END IF
  389. IF( SIGMA.LT.ZERO ) THEN
  390. INFO = 1
  391. RETURN
  392. END IF
  393. *
  394. * Find last unreduced submatrix's top index I0, find QMAX and
  395. * EMIN. Find Gershgorin-type bound if Q's much greater than E's.
  396. *
  397. EMAX = ZERO
  398. IF( N0.GT.I0 ) THEN
  399. EMIN = ABS( Z( 4*N0-5 ) )
  400. ELSE
  401. EMIN = ZERO
  402. END IF
  403. QMIN = Z( 4*N0-3 )
  404. QMAX = QMIN
  405. DO 90 I4 = 4*N0, 8, -4
  406. IF( Z( I4-5 ).LE.ZERO )
  407. $ GO TO 100
  408. IF( QMIN.GE.FOUR*EMAX ) THEN
  409. QMIN = MIN( QMIN, Z( I4-3 ) )
  410. EMAX = MAX( EMAX, Z( I4-5 ) )
  411. END IF
  412. QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
  413. EMIN = MIN( EMIN, Z( I4-5 ) )
  414. 90 CONTINUE
  415. I4 = 4
  416. *
  417. 100 CONTINUE
  418. I0 = I4 / 4
  419. PP = 0
  420. *
  421. IF( N0-I0.GT.1 ) THEN
  422. DEE = Z( 4*I0-3 )
  423. DEEMIN = DEE
  424. KMIN = I0
  425. DO 110 I4 = 4*I0+1, 4*N0-3, 4
  426. DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
  427. IF( DEE.LE.DEEMIN ) THEN
  428. DEEMIN = DEE
  429. KMIN = ( I4+3 )/4
  430. END IF
  431. 110 CONTINUE
  432. IF( (KMIN-I0)*2.LT.N0-KMIN .AND.
  433. $ DEEMIN.LE.HALF*Z(4*N0-3) ) THEN
  434. IPN4 = 4*( I0+N0 )
  435. PP = 2
  436. DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
  437. TEMP = Z( I4-3 )
  438. Z( I4-3 ) = Z( IPN4-I4-3 )
  439. Z( IPN4-I4-3 ) = TEMP
  440. TEMP = Z( I4-2 )
  441. Z( I4-2 ) = Z( IPN4-I4-2 )
  442. Z( IPN4-I4-2 ) = TEMP
  443. TEMP = Z( I4-1 )
  444. Z( I4-1 ) = Z( IPN4-I4-5 )
  445. Z( IPN4-I4-5 ) = TEMP
  446. TEMP = Z( I4 )
  447. Z( I4 ) = Z( IPN4-I4-4 )
  448. Z( IPN4-I4-4 ) = TEMP
  449. 120 CONTINUE
  450. END IF
  451. END IF
  452. *
  453. * Put -(initial shift) into DMIN.
  454. *
  455. DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
  456. *
  457. * Now I0:N0 is unreduced.
  458. * PP = 0 for ping, PP = 1 for pong.
  459. * PP = 2 indicates that flipping was applied to the Z array and
  460. * and that the tests for deflation upon entry in SLASQ3
  461. * should not be performed.
  462. *
  463. NBIG = 100*( N0-I0+1 )
  464. DO 140 IWHILB = 1, NBIG
  465. IF( I0.GT.N0 )
  466. $ GO TO 150
  467. *
  468. * While submatrix unfinished take a good dqds step.
  469. *
  470. CALL SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
  471. $ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
  472. $ DN2, G, TAU )
  473. *
  474. PP = 1 - PP
  475. *
  476. * When EMIN is very small check for splits.
  477. *
  478. IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
  479. IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
  480. $ Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
  481. SPLT = I0 - 1
  482. QMAX = Z( 4*I0-3 )
  483. EMIN = Z( 4*I0-1 )
  484. OLDEMN = Z( 4*I0 )
  485. DO 130 I4 = 4*I0, 4*( N0-3 ), 4
  486. IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
  487. $ Z( I4-1 ).LE.TOL2*SIGMA ) THEN
  488. Z( I4-1 ) = -SIGMA
  489. SPLT = I4 / 4
  490. QMAX = ZERO
  491. EMIN = Z( I4+3 )
  492. OLDEMN = Z( I4+4 )
  493. ELSE
  494. QMAX = MAX( QMAX, Z( I4+1 ) )
  495. EMIN = MIN( EMIN, Z( I4-1 ) )
  496. OLDEMN = MIN( OLDEMN, Z( I4 ) )
  497. END IF
  498. 130 CONTINUE
  499. Z( 4*N0-1 ) = EMIN
  500. Z( 4*N0 ) = OLDEMN
  501. I0 = SPLT + 1
  502. END IF
  503. END IF
  504. *
  505. 140 CONTINUE
  506. *
  507. INFO = 2
  508. *
  509. * Maximum number of iterations exceeded, restore the shift
  510. * SIGMA and place the new d's and e's in a qd array.
  511. * This might need to be done for several blocks
  512. *
  513. I1 = I0
  514. N1 = N0
  515. 145 CONTINUE
  516. TEMPQ = Z( 4*I0-3 )
  517. Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA
  518. DO K = I0+1, N0
  519. TEMPE = Z( 4*K-5 )
  520. Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 ))
  521. TEMPQ = Z( 4*K-3 )
  522. Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 )
  523. END DO
  524. *
  525. * Prepare to do this on the previous block if there is one
  526. *
  527. IF( I1.GT.1 ) THEN
  528. N1 = I1-1
  529. DO WHILE( ( I1.GE.2 ) .AND. ( Z(4*I1-5).GE.ZERO ) )
  530. I1 = I1 - 1
  531. END DO
  532. IF( I1.GE.1 ) THEN
  533. SIGMA = -Z(4*N1-1)
  534. GO TO 145
  535. END IF
  536. END IF
  537. DO K = 1, N
  538. Z( 2*K-1 ) = Z( 4*K-3 )
  539. *
  540. * Only the block 1..N0 is unfinished. The rest of the e's
  541. * must be essentially zero, although sometimes other data
  542. * has been stored in them.
  543. *
  544. IF( K.LT.N0 ) THEN
  545. Z( 2*K ) = Z( 4*K-1 )
  546. ELSE
  547. Z( 2*K ) = 0
  548. END IF
  549. END DO
  550. RETURN
  551. *
  552. * end IWHILB
  553. *
  554. 150 CONTINUE
  555. *
  556. 160 CONTINUE
  557. *
  558. INFO = 3
  559. RETURN
  560. *
  561. * end IWHILA
  562. *
  563. 170 CONTINUE
  564. *
  565. * Move q's to the front.
  566. *
  567. DO 180 K = 2, N
  568. Z( K ) = Z( 4*K-3 )
  569. 180 CONTINUE
  570. *
  571. * Sort and compute sum of eigenvalues.
  572. *
  573. CALL SLASRT( 'D', N, Z, IINFO )
  574. *
  575. E = ZERO
  576. DO 190 K = N, 1, -1
  577. E = E + Z( K )
  578. 190 CONTINUE
  579. *
  580. * Store trace, sum(eigenvalues) and information on performance.
  581. *
  582. Z( 2*N+1 ) = TRACE
  583. Z( 2*N+2 ) = E
  584. Z( 2*N+3 ) = REAL( ITER )
  585. Z( 2*N+4 ) = REAL( NDIV ) / REAL( N**2 )
  586. Z( 2*N+5 ) = HUNDRD*NFAIL / REAL( ITER )
  587. RETURN
  588. *
  589. * End of SLASQ2
  590. *
  591. END