You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slalsd.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. *> \brief \b SLALSD uses the singular value decomposition of A to solve the least squares problem.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLALSD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slalsd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slalsd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slalsd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
  22. * RANK, WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ
  27. * REAL RCOND
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IWORK( * )
  31. * REAL B( LDB, * ), D( * ), E( * ), WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> SLALSD uses the singular value decomposition of A to solve the least
  41. *> squares problem of finding X to minimize the Euclidean norm of each
  42. *> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
  43. *> are N-by-NRHS. The solution X overwrites B.
  44. *>
  45. *> The singular values of A smaller than RCOND times the largest
  46. *> singular value are treated as zero in solving the least squares
  47. *> problem; in this case a minimum norm solution is returned.
  48. *> The actual singular values are returned in D in ascending order.
  49. *>
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] UPLO
  56. *> \verbatim
  57. *> UPLO is CHARACTER*1
  58. *> = 'U': D and E define an upper bidiagonal matrix.
  59. *> = 'L': D and E define a lower bidiagonal matrix.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] SMLSIZ
  63. *> \verbatim
  64. *> SMLSIZ is INTEGER
  65. *> The maximum size of the subproblems at the bottom of the
  66. *> computation tree.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] N
  70. *> \verbatim
  71. *> N is INTEGER
  72. *> The dimension of the bidiagonal matrix. N >= 0.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] NRHS
  76. *> \verbatim
  77. *> NRHS is INTEGER
  78. *> The number of columns of B. NRHS must be at least 1.
  79. *> \endverbatim
  80. *>
  81. *> \param[in,out] D
  82. *> \verbatim
  83. *> D is REAL array, dimension (N)
  84. *> On entry D contains the main diagonal of the bidiagonal
  85. *> matrix. On exit, if INFO = 0, D contains its singular values.
  86. *> \endverbatim
  87. *>
  88. *> \param[in,out] E
  89. *> \verbatim
  90. *> E is REAL array, dimension (N-1)
  91. *> Contains the super-diagonal entries of the bidiagonal matrix.
  92. *> On exit, E has been destroyed.
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is REAL array, dimension (LDB,NRHS)
  98. *> On input, B contains the right hand sides of the least
  99. *> squares problem. On output, B contains the solution X.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDB
  103. *> \verbatim
  104. *> LDB is INTEGER
  105. *> The leading dimension of B in the calling subprogram.
  106. *> LDB must be at least max(1,N).
  107. *> \endverbatim
  108. *>
  109. *> \param[in] RCOND
  110. *> \verbatim
  111. *> RCOND is REAL
  112. *> The singular values of A less than or equal to RCOND times
  113. *> the largest singular value are treated as zero in solving
  114. *> the least squares problem. If RCOND is negative,
  115. *> machine precision is used instead.
  116. *> For example, if diag(S)*X=B were the least squares problem,
  117. *> where diag(S) is a diagonal matrix of singular values, the
  118. *> solution would be X(i) = B(i) / S(i) if S(i) is greater than
  119. *> RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
  120. *> RCOND*max(S).
  121. *> \endverbatim
  122. *>
  123. *> \param[out] RANK
  124. *> \verbatim
  125. *> RANK is INTEGER
  126. *> The number of singular values of A greater than RCOND times
  127. *> the largest singular value.
  128. *> \endverbatim
  129. *>
  130. *> \param[out] WORK
  131. *> \verbatim
  132. *> WORK is REAL array, dimension at least
  133. *> (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
  134. *> where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
  135. *> \endverbatim
  136. *>
  137. *> \param[out] IWORK
  138. *> \verbatim
  139. *> IWORK is INTEGER array, dimension at least
  140. *> (3*N*NLVL + 11*N)
  141. *> \endverbatim
  142. *>
  143. *> \param[out] INFO
  144. *> \verbatim
  145. *> INFO is INTEGER
  146. *> = 0: successful exit.
  147. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  148. *> > 0: The algorithm failed to compute a singular value while
  149. *> working on the submatrix lying in rows and columns
  150. *> INFO/(N+1) through MOD(INFO,N+1).
  151. *> \endverbatim
  152. *
  153. * Authors:
  154. * ========
  155. *
  156. *> \author Univ. of Tennessee
  157. *> \author Univ. of California Berkeley
  158. *> \author Univ. of Colorado Denver
  159. *> \author NAG Ltd.
  160. *
  161. *> \ingroup realOTHERcomputational
  162. *
  163. *> \par Contributors:
  164. * ==================
  165. *>
  166. *> Ming Gu and Ren-Cang Li, Computer Science Division, University of
  167. *> California at Berkeley, USA \n
  168. *> Osni Marques, LBNL/NERSC, USA \n
  169. *
  170. * =====================================================================
  171. SUBROUTINE SLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
  172. $ RANK, WORK, IWORK, INFO )
  173. *
  174. * -- LAPACK computational routine --
  175. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  176. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  177. *
  178. * .. Scalar Arguments ..
  179. CHARACTER UPLO
  180. INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ
  181. REAL RCOND
  182. * ..
  183. * .. Array Arguments ..
  184. INTEGER IWORK( * )
  185. REAL B( LDB, * ), D( * ), E( * ), WORK( * )
  186. * ..
  187. *
  188. * =====================================================================
  189. *
  190. * .. Parameters ..
  191. REAL ZERO, ONE, TWO
  192. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
  193. * ..
  194. * .. Local Scalars ..
  195. INTEGER BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
  196. $ GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
  197. $ NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
  198. $ SMLSZP, SQRE, ST, ST1, U, VT, Z
  199. REAL CS, EPS, ORGNRM, R, RCND, SN, TOL
  200. * ..
  201. * .. External Functions ..
  202. INTEGER ISAMAX
  203. REAL SLAMCH, SLANST
  204. EXTERNAL ISAMAX, SLAMCH, SLANST
  205. * ..
  206. * .. External Subroutines ..
  207. EXTERNAL SCOPY, SGEMM, SLACPY, SLALSA, SLARTG, SLASCL,
  208. $ SLASDA, SLASDQ, SLASET, SLASRT, SROT, XERBLA
  209. * ..
  210. * .. Intrinsic Functions ..
  211. INTRINSIC ABS, INT, LOG, REAL, SIGN
  212. * ..
  213. * .. Executable Statements ..
  214. *
  215. * Test the input parameters.
  216. *
  217. INFO = 0
  218. *
  219. IF( N.LT.0 ) THEN
  220. INFO = -3
  221. ELSE IF( NRHS.LT.1 ) THEN
  222. INFO = -4
  223. ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
  224. INFO = -8
  225. END IF
  226. IF( INFO.NE.0 ) THEN
  227. CALL XERBLA( 'SLALSD', -INFO )
  228. RETURN
  229. END IF
  230. *
  231. EPS = SLAMCH( 'Epsilon' )
  232. *
  233. * Set up the tolerance.
  234. *
  235. IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
  236. RCND = EPS
  237. ELSE
  238. RCND = RCOND
  239. END IF
  240. *
  241. RANK = 0
  242. *
  243. * Quick return if possible.
  244. *
  245. IF( N.EQ.0 ) THEN
  246. RETURN
  247. ELSE IF( N.EQ.1 ) THEN
  248. IF( D( 1 ).EQ.ZERO ) THEN
  249. CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
  250. ELSE
  251. RANK = 1
  252. CALL SLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
  253. D( 1 ) = ABS( D( 1 ) )
  254. END IF
  255. RETURN
  256. END IF
  257. *
  258. * Rotate the matrix if it is lower bidiagonal.
  259. *
  260. IF( UPLO.EQ.'L' ) THEN
  261. DO 10 I = 1, N - 1
  262. CALL SLARTG( D( I ), E( I ), CS, SN, R )
  263. D( I ) = R
  264. E( I ) = SN*D( I+1 )
  265. D( I+1 ) = CS*D( I+1 )
  266. IF( NRHS.EQ.1 ) THEN
  267. CALL SROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
  268. ELSE
  269. WORK( I*2-1 ) = CS
  270. WORK( I*2 ) = SN
  271. END IF
  272. 10 CONTINUE
  273. IF( NRHS.GT.1 ) THEN
  274. DO 30 I = 1, NRHS
  275. DO 20 J = 1, N - 1
  276. CS = WORK( J*2-1 )
  277. SN = WORK( J*2 )
  278. CALL SROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
  279. 20 CONTINUE
  280. 30 CONTINUE
  281. END IF
  282. END IF
  283. *
  284. * Scale.
  285. *
  286. NM1 = N - 1
  287. ORGNRM = SLANST( 'M', N, D, E )
  288. IF( ORGNRM.EQ.ZERO ) THEN
  289. CALL SLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
  290. RETURN
  291. END IF
  292. *
  293. CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
  294. CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
  295. *
  296. * If N is smaller than the minimum divide size SMLSIZ, then solve
  297. * the problem with another solver.
  298. *
  299. IF( N.LE.SMLSIZ ) THEN
  300. NWORK = 1 + N*N
  301. CALL SLASET( 'A', N, N, ZERO, ONE, WORK, N )
  302. CALL SLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
  303. $ LDB, WORK( NWORK ), INFO )
  304. IF( INFO.NE.0 ) THEN
  305. RETURN
  306. END IF
  307. TOL = RCND*ABS( D( ISAMAX( N, D, 1 ) ) )
  308. DO 40 I = 1, N
  309. IF( D( I ).LE.TOL ) THEN
  310. CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
  311. ELSE
  312. CALL SLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
  313. $ LDB, INFO )
  314. RANK = RANK + 1
  315. END IF
  316. 40 CONTINUE
  317. CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
  318. $ WORK( NWORK ), N )
  319. CALL SLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
  320. *
  321. * Unscale.
  322. *
  323. CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  324. CALL SLASRT( 'D', N, D, INFO )
  325. CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  326. *
  327. RETURN
  328. END IF
  329. *
  330. * Book-keeping and setting up some constants.
  331. *
  332. NLVL = INT( LOG( REAL( N ) / REAL( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
  333. *
  334. SMLSZP = SMLSIZ + 1
  335. *
  336. U = 1
  337. VT = 1 + SMLSIZ*N
  338. DIFL = VT + SMLSZP*N
  339. DIFR = DIFL + NLVL*N
  340. Z = DIFR + NLVL*N*2
  341. C = Z + NLVL*N
  342. S = C + N
  343. POLES = S + N
  344. GIVNUM = POLES + 2*NLVL*N
  345. BX = GIVNUM + 2*NLVL*N
  346. NWORK = BX + N*NRHS
  347. *
  348. SIZEI = 1 + N
  349. K = SIZEI + N
  350. GIVPTR = K + N
  351. PERM = GIVPTR + N
  352. GIVCOL = PERM + NLVL*N
  353. IWK = GIVCOL + NLVL*N*2
  354. *
  355. ST = 1
  356. SQRE = 0
  357. ICMPQ1 = 1
  358. ICMPQ2 = 0
  359. NSUB = 0
  360. *
  361. DO 50 I = 1, N
  362. IF( ABS( D( I ) ).LT.EPS ) THEN
  363. D( I ) = SIGN( EPS, D( I ) )
  364. END IF
  365. 50 CONTINUE
  366. *
  367. DO 60 I = 1, NM1
  368. IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
  369. NSUB = NSUB + 1
  370. IWORK( NSUB ) = ST
  371. *
  372. * Subproblem found. First determine its size and then
  373. * apply divide and conquer on it.
  374. *
  375. IF( I.LT.NM1 ) THEN
  376. *
  377. * A subproblem with E(I) small for I < NM1.
  378. *
  379. NSIZE = I - ST + 1
  380. IWORK( SIZEI+NSUB-1 ) = NSIZE
  381. ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
  382. *
  383. * A subproblem with E(NM1) not too small but I = NM1.
  384. *
  385. NSIZE = N - ST + 1
  386. IWORK( SIZEI+NSUB-1 ) = NSIZE
  387. ELSE
  388. *
  389. * A subproblem with E(NM1) small. This implies an
  390. * 1-by-1 subproblem at D(N), which is not solved
  391. * explicitly.
  392. *
  393. NSIZE = I - ST + 1
  394. IWORK( SIZEI+NSUB-1 ) = NSIZE
  395. NSUB = NSUB + 1
  396. IWORK( NSUB ) = N
  397. IWORK( SIZEI+NSUB-1 ) = 1
  398. CALL SCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
  399. END IF
  400. ST1 = ST - 1
  401. IF( NSIZE.EQ.1 ) THEN
  402. *
  403. * This is a 1-by-1 subproblem and is not solved
  404. * explicitly.
  405. *
  406. CALL SCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
  407. ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  408. *
  409. * This is a small subproblem and is solved by SLASDQ.
  410. *
  411. CALL SLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
  412. $ WORK( VT+ST1 ), N )
  413. CALL SLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
  414. $ E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
  415. $ N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
  416. IF( INFO.NE.0 ) THEN
  417. RETURN
  418. END IF
  419. CALL SLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
  420. $ WORK( BX+ST1 ), N )
  421. ELSE
  422. *
  423. * A large problem. Solve it using divide and conquer.
  424. *
  425. CALL SLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
  426. $ E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
  427. $ IWORK( K+ST1 ), WORK( DIFL+ST1 ),
  428. $ WORK( DIFR+ST1 ), WORK( Z+ST1 ),
  429. $ WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
  430. $ IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
  431. $ WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
  432. $ WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
  433. $ INFO )
  434. IF( INFO.NE.0 ) THEN
  435. RETURN
  436. END IF
  437. BXST = BX + ST1
  438. CALL SLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
  439. $ LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
  440. $ WORK( VT+ST1 ), IWORK( K+ST1 ),
  441. $ WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
  442. $ WORK( Z+ST1 ), WORK( POLES+ST1 ),
  443. $ IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  444. $ IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
  445. $ WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
  446. $ IWORK( IWK ), INFO )
  447. IF( INFO.NE.0 ) THEN
  448. RETURN
  449. END IF
  450. END IF
  451. ST = I + 1
  452. END IF
  453. 60 CONTINUE
  454. *
  455. * Apply the singular values and treat the tiny ones as zero.
  456. *
  457. TOL = RCND*ABS( D( ISAMAX( N, D, 1 ) ) )
  458. *
  459. DO 70 I = 1, N
  460. *
  461. * Some of the elements in D can be negative because 1-by-1
  462. * subproblems were not solved explicitly.
  463. *
  464. IF( ABS( D( I ) ).LE.TOL ) THEN
  465. CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
  466. ELSE
  467. RANK = RANK + 1
  468. CALL SLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
  469. $ WORK( BX+I-1 ), N, INFO )
  470. END IF
  471. D( I ) = ABS( D( I ) )
  472. 70 CONTINUE
  473. *
  474. * Now apply back the right singular vectors.
  475. *
  476. ICMPQ2 = 1
  477. DO 80 I = 1, NSUB
  478. ST = IWORK( I )
  479. ST1 = ST - 1
  480. NSIZE = IWORK( SIZEI+I-1 )
  481. BXST = BX + ST1
  482. IF( NSIZE.EQ.1 ) THEN
  483. CALL SCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
  484. ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  485. CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  486. $ WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
  487. $ B( ST, 1 ), LDB )
  488. ELSE
  489. CALL SLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
  490. $ B( ST, 1 ), LDB, WORK( U+ST1 ), N,
  491. $ WORK( VT+ST1 ), IWORK( K+ST1 ),
  492. $ WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
  493. $ WORK( Z+ST1 ), WORK( POLES+ST1 ),
  494. $ IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  495. $ IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
  496. $ WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
  497. $ IWORK( IWK ), INFO )
  498. IF( INFO.NE.0 ) THEN
  499. RETURN
  500. END IF
  501. END IF
  502. 80 CONTINUE
  503. *
  504. * Unscale and sort the singular values.
  505. *
  506. CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  507. CALL SLASRT( 'D', N, D, INFO )
  508. CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  509. *
  510. RETURN
  511. *
  512. * End of SLALSD
  513. *
  514. END