You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetrf.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. *> \brief \b CHETRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHETRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, LWORK, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CHETRF computes the factorization of a complex Hermitian matrix A
  39. *> using the Bunch-Kaufman diagonal pivoting method. The form of the
  40. *> factorization is
  41. *>
  42. *> A = U*D*U**H or A = L*D*L**H
  43. *>
  44. *> where U (or L) is a product of permutation and unit upper (lower)
  45. *> triangular matrices, and D is Hermitian and block diagonal with
  46. *> 1-by-1 and 2-by-2 diagonal blocks.
  47. *>
  48. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] UPLO
  55. *> \verbatim
  56. *> UPLO is CHARACTER*1
  57. *> = 'U': Upper triangle of A is stored;
  58. *> = 'L': Lower triangle of A is stored.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix A. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] A
  68. *> \verbatim
  69. *> A is COMPLEX array, dimension (LDA,N)
  70. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  71. *> N-by-N upper triangular part of A contains the upper
  72. *> triangular part of the matrix A, and the strictly lower
  73. *> triangular part of A is not referenced. If UPLO = 'L', the
  74. *> leading N-by-N lower triangular part of A contains the lower
  75. *> triangular part of the matrix A, and the strictly upper
  76. *> triangular part of A is not referenced.
  77. *>
  78. *> On exit, the block diagonal matrix D and the multipliers used
  79. *> to obtain the factor U or L (see below for further details).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDA
  83. *> \verbatim
  84. *> LDA is INTEGER
  85. *> The leading dimension of the array A. LDA >= max(1,N).
  86. *> \endverbatim
  87. *>
  88. *> \param[out] IPIV
  89. *> \verbatim
  90. *> IPIV is INTEGER array, dimension (N)
  91. *> Details of the interchanges and the block structure of D.
  92. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  93. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  94. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  95. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  96. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  97. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  98. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  99. *> \endverbatim
  100. *>
  101. *> \param[out] WORK
  102. *> \verbatim
  103. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  104. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LWORK
  108. *> \verbatim
  109. *> LWORK is INTEGER
  110. *> The length of WORK. LWORK >= 1. For best performance
  111. *> LWORK >= N*NB, where NB is the block size returned by ILAENV.
  112. *> \endverbatim
  113. *>
  114. *> \param[out] INFO
  115. *> \verbatim
  116. *> INFO is INTEGER
  117. *> = 0: successful exit
  118. *> < 0: if INFO = -i, the i-th argument had an illegal value
  119. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  120. *> has been completed, but the block diagonal matrix D is
  121. *> exactly singular, and division by zero will occur if it
  122. *> is used to solve a system of equations.
  123. *> \endverbatim
  124. *
  125. * Authors:
  126. * ========
  127. *
  128. *> \author Univ. of Tennessee
  129. *> \author Univ. of California Berkeley
  130. *> \author Univ. of Colorado Denver
  131. *> \author NAG Ltd.
  132. *
  133. *> \ingroup hetrf
  134. *
  135. *> \par Further Details:
  136. * =====================
  137. *>
  138. *> \verbatim
  139. *>
  140. *> If UPLO = 'U', then A = U*D*U**H, where
  141. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  142. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  143. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  144. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  145. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  146. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  147. *>
  148. *> ( I v 0 ) k-s
  149. *> U(k) = ( 0 I 0 ) s
  150. *> ( 0 0 I ) n-k
  151. *> k-s s n-k
  152. *>
  153. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  154. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  155. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  156. *>
  157. *> If UPLO = 'L', then A = L*D*L**H, where
  158. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  159. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  160. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  161. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  162. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  163. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  164. *>
  165. *> ( I 0 0 ) k-1
  166. *> L(k) = ( 0 I 0 ) s
  167. *> ( 0 v I ) n-k-s+1
  168. *> k-1 s n-k-s+1
  169. *>
  170. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  171. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  172. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  173. *> \endverbatim
  174. *>
  175. * =====================================================================
  176. SUBROUTINE CHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  177. *
  178. * -- LAPACK computational routine --
  179. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  180. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181. *
  182. * .. Scalar Arguments ..
  183. CHARACTER UPLO
  184. INTEGER INFO, LDA, LWORK, N
  185. * ..
  186. * .. Array Arguments ..
  187. INTEGER IPIV( * )
  188. COMPLEX A( LDA, * ), WORK( * )
  189. * ..
  190. *
  191. * =====================================================================
  192. *
  193. * .. Local Scalars ..
  194. LOGICAL LQUERY, UPPER
  195. INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
  196. * ..
  197. * .. External Functions ..
  198. LOGICAL LSAME
  199. INTEGER ILAENV
  200. REAL SROUNDUP_LWORK
  201. EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK
  202. * ..
  203. * .. External Subroutines ..
  204. EXTERNAL CHETF2, CLAHEF, XERBLA
  205. * ..
  206. * .. Intrinsic Functions ..
  207. INTRINSIC MAX
  208. * ..
  209. * .. Executable Statements ..
  210. *
  211. * Test the input parameters.
  212. *
  213. INFO = 0
  214. UPPER = LSAME( UPLO, 'U' )
  215. LQUERY = ( LWORK.EQ.-1 )
  216. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  217. INFO = -1
  218. ELSE IF( N.LT.0 ) THEN
  219. INFO = -2
  220. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  221. INFO = -4
  222. ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  223. INFO = -7
  224. END IF
  225. *
  226. IF( INFO.EQ.0 ) THEN
  227. *
  228. * Determine the block size
  229. *
  230. NB = ILAENV( 1, 'CHETRF', UPLO, N, -1, -1, -1 )
  231. LWKOPT = MAX( 1, N*NB )
  232. WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
  233. END IF
  234. *
  235. IF( INFO.NE.0 ) THEN
  236. CALL XERBLA( 'CHETRF', -INFO )
  237. RETURN
  238. ELSE IF( LQUERY ) THEN
  239. RETURN
  240. END IF
  241. *
  242. NBMIN = 2
  243. LDWORK = N
  244. IF( NB.GT.1 .AND. NB.LT.N ) THEN
  245. IWS = LDWORK*NB
  246. IF( LWORK.LT.IWS ) THEN
  247. NB = MAX( LWORK / LDWORK, 1 )
  248. NBMIN = MAX( 2, ILAENV( 2, 'CHETRF', UPLO, N, -1, -1, -1 ) )
  249. END IF
  250. ELSE
  251. IWS = 1
  252. END IF
  253. IF( NB.LT.NBMIN )
  254. $ NB = N
  255. *
  256. IF( UPPER ) THEN
  257. *
  258. * Factorize A as U*D*U**H using the upper triangle of A
  259. *
  260. * K is the main loop index, decreasing from N to 1 in steps of
  261. * KB, where KB is the number of columns factorized by CLAHEF;
  262. * KB is either NB or NB-1, or K for the last block
  263. *
  264. K = N
  265. 10 CONTINUE
  266. *
  267. * If K < 1, exit from loop
  268. *
  269. IF( K.LT.1 )
  270. $ GO TO 40
  271. *
  272. IF( K.GT.NB ) THEN
  273. *
  274. * Factorize columns k-kb+1:k of A and use blocked code to
  275. * update columns 1:k-kb
  276. *
  277. CALL CLAHEF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, N, IINFO )
  278. ELSE
  279. *
  280. * Use unblocked code to factorize columns 1:k of A
  281. *
  282. CALL CHETF2( UPLO, K, A, LDA, IPIV, IINFO )
  283. KB = K
  284. END IF
  285. *
  286. * Set INFO on the first occurrence of a zero pivot
  287. *
  288. IF( INFO.EQ.0 .AND. IINFO.GT.0 )
  289. $ INFO = IINFO
  290. *
  291. * Decrease K and return to the start of the main loop
  292. *
  293. K = K - KB
  294. GO TO 10
  295. *
  296. ELSE
  297. *
  298. * Factorize A as L*D*L**H using the lower triangle of A
  299. *
  300. * K is the main loop index, increasing from 1 to N in steps of
  301. * KB, where KB is the number of columns factorized by CLAHEF;
  302. * KB is either NB or NB-1, or N-K+1 for the last block
  303. *
  304. K = 1
  305. 20 CONTINUE
  306. *
  307. * If K > N, exit from loop
  308. *
  309. IF( K.GT.N )
  310. $ GO TO 40
  311. *
  312. IF( K.LE.N-NB ) THEN
  313. *
  314. * Factorize columns k:k+kb-1 of A and use blocked code to
  315. * update columns k+kb:n
  316. *
  317. CALL CLAHEF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
  318. $ WORK, N, IINFO )
  319. ELSE
  320. *
  321. * Use unblocked code to factorize columns k:n of A
  322. *
  323. CALL CHETF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
  324. KB = N - K + 1
  325. END IF
  326. *
  327. * Set INFO on the first occurrence of a zero pivot
  328. *
  329. IF( INFO.EQ.0 .AND. IINFO.GT.0 )
  330. $ INFO = IINFO + K - 1
  331. *
  332. * Adjust IPIV
  333. *
  334. DO 30 J = K, K + KB - 1
  335. IF( IPIV( J ).GT.0 ) THEN
  336. IPIV( J ) = IPIV( J ) + K - 1
  337. ELSE
  338. IPIV( J ) = IPIV( J ) - K + 1
  339. END IF
  340. 30 CONTINUE
  341. *
  342. * Increase K and return to the start of the main loop
  343. *
  344. K = K + KB
  345. GO TO 20
  346. *
  347. END IF
  348. *
  349. 40 CONTINUE
  350. WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
  351. RETURN
  352. *
  353. * End of CHETRF
  354. *
  355. END