You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgerq2.f 5.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. *> \brief \b CGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGERQ2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgerq2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgerq2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgerq2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGERQ2( M, N, A, LDA, TAU, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> CGERQ2 computes an RQ factorization of a complex m by n matrix A:
  37. *> A = R * Q.
  38. *> \endverbatim
  39. *
  40. * Arguments:
  41. * ==========
  42. *
  43. *> \param[in] M
  44. *> \verbatim
  45. *> M is INTEGER
  46. *> The number of rows of the matrix A. M >= 0.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] N
  50. *> \verbatim
  51. *> N is INTEGER
  52. *> The number of columns of the matrix A. N >= 0.
  53. *> \endverbatim
  54. *>
  55. *> \param[in,out] A
  56. *> \verbatim
  57. *> A is COMPLEX array, dimension (LDA,N)
  58. *> On entry, the m by n matrix A.
  59. *> On exit, if m <= n, the upper triangle of the subarray
  60. *> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
  61. *> if m >= n, the elements on and above the (m-n)-th subdiagonal
  62. *> contain the m by n upper trapezoidal matrix R; the remaining
  63. *> elements, with the array TAU, represent the unitary matrix
  64. *> Q as a product of elementary reflectors (see Further
  65. *> Details).
  66. *> \endverbatim
  67. *>
  68. *> \param[in] LDA
  69. *> \verbatim
  70. *> LDA is INTEGER
  71. *> The leading dimension of the array A. LDA >= max(1,M).
  72. *> \endverbatim
  73. *>
  74. *> \param[out] TAU
  75. *> \verbatim
  76. *> TAU is COMPLEX array, dimension (min(M,N))
  77. *> The scalar factors of the elementary reflectors (see Further
  78. *> Details).
  79. *> \endverbatim
  80. *>
  81. *> \param[out] WORK
  82. *> \verbatim
  83. *> WORK is COMPLEX array, dimension (M)
  84. *> \endverbatim
  85. *>
  86. *> \param[out] INFO
  87. *> \verbatim
  88. *> INFO is INTEGER
  89. *> = 0: successful exit
  90. *> < 0: if INFO = -i, the i-th argument had an illegal value
  91. *> \endverbatim
  92. *
  93. * Authors:
  94. * ========
  95. *
  96. *> \author Univ. of Tennessee
  97. *> \author Univ. of California Berkeley
  98. *> \author Univ. of Colorado Denver
  99. *> \author NAG Ltd.
  100. *
  101. *> \ingroup complexGEcomputational
  102. *
  103. *> \par Further Details:
  104. * =====================
  105. *>
  106. *> \verbatim
  107. *>
  108. *> The matrix Q is represented as a product of elementary reflectors
  109. *>
  110. *> Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
  111. *>
  112. *> Each H(i) has the form
  113. *>
  114. *> H(i) = I - tau * v * v**H
  115. *>
  116. *> where tau is a complex scalar, and v is a complex vector with
  117. *> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
  118. *> exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
  119. *> \endverbatim
  120. *>
  121. * =====================================================================
  122. SUBROUTINE CGERQ2( M, N, A, LDA, TAU, WORK, INFO )
  123. *
  124. * -- LAPACK computational routine --
  125. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  126. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  127. *
  128. * .. Scalar Arguments ..
  129. INTEGER INFO, LDA, M, N
  130. * ..
  131. * .. Array Arguments ..
  132. COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  133. * ..
  134. *
  135. * =====================================================================
  136. *
  137. * .. Parameters ..
  138. COMPLEX ONE
  139. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  140. * ..
  141. * .. Local Scalars ..
  142. INTEGER I, K
  143. COMPLEX ALPHA
  144. * ..
  145. * .. External Subroutines ..
  146. EXTERNAL CLACGV, CLARF, CLARFG, XERBLA
  147. * ..
  148. * .. Intrinsic Functions ..
  149. INTRINSIC MAX, MIN
  150. * ..
  151. * .. Executable Statements ..
  152. *
  153. * Test the input arguments
  154. *
  155. INFO = 0
  156. IF( M.LT.0 ) THEN
  157. INFO = -1
  158. ELSE IF( N.LT.0 ) THEN
  159. INFO = -2
  160. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  161. INFO = -4
  162. END IF
  163. IF( INFO.NE.0 ) THEN
  164. CALL XERBLA( 'CGERQ2', -INFO )
  165. RETURN
  166. END IF
  167. *
  168. K = MIN( M, N )
  169. *
  170. DO 10 I = K, 1, -1
  171. *
  172. * Generate elementary reflector H(i) to annihilate
  173. * A(m-k+i,1:n-k+i-1)
  174. *
  175. CALL CLACGV( N-K+I, A( M-K+I, 1 ), LDA )
  176. ALPHA = A( M-K+I, N-K+I )
  177. CALL CLARFG( N-K+I, ALPHA, A( M-K+I, 1 ), LDA,
  178. $ TAU( I ) )
  179. *
  180. * Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
  181. *
  182. A( M-K+I, N-K+I ) = ONE
  183. CALL CLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
  184. $ TAU( I ), A, LDA, WORK )
  185. A( M-K+I, N-K+I ) = ALPHA
  186. CALL CLACGV( N-K+I-1, A( M-K+I, 1 ), LDA )
  187. 10 CONTINUE
  188. RETURN
  189. *
  190. * End of CGERQ2
  191. *
  192. END