You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbgst.f 49 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466
  1. *> \brief \b CHBGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHBGST + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgst.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgst.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgst.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
  22. * LDX, WORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO, VECT
  26. * INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL RWORK( * )
  30. * COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
  31. * $ X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CHBGST reduces a complex Hermitian-definite banded generalized
  41. *> eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
  42. *> such that C has the same bandwidth as A.
  43. *>
  44. *> B must have been previously factorized as S**H*S by CPBSTF, using a
  45. *> split Cholesky factorization. A is overwritten by C = X**H*A*X, where
  46. *> X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the
  47. *> bandwidth of A.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] VECT
  54. *> \verbatim
  55. *> VECT is CHARACTER*1
  56. *> = 'N': do not form the transformation matrix X;
  57. *> = 'V': form X.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] UPLO
  61. *> \verbatim
  62. *> UPLO is CHARACTER*1
  63. *> = 'U': Upper triangle of A is stored;
  64. *> = 'L': Lower triangle of A is stored.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The order of the matrices A and B. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] KA
  74. *> \verbatim
  75. *> KA is INTEGER
  76. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  77. *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] KB
  81. *> \verbatim
  82. *> KB is INTEGER
  83. *> The number of superdiagonals of the matrix B if UPLO = 'U',
  84. *> or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] AB
  88. *> \verbatim
  89. *> AB is COMPLEX array, dimension (LDAB,N)
  90. *> On entry, the upper or lower triangle of the Hermitian band
  91. *> matrix A, stored in the first ka+1 rows of the array. The
  92. *> j-th column of A is stored in the j-th column of the array AB
  93. *> as follows:
  94. *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
  95. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
  96. *>
  97. *> On exit, the transformed matrix X**H*A*X, stored in the same
  98. *> format as A.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDAB
  102. *> \verbatim
  103. *> LDAB is INTEGER
  104. *> The leading dimension of the array AB. LDAB >= KA+1.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] BB
  108. *> \verbatim
  109. *> BB is COMPLEX array, dimension (LDBB,N)
  110. *> The banded factor S from the split Cholesky factorization of
  111. *> B, as returned by CPBSTF, stored in the first kb+1 rows of
  112. *> the array.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDBB
  116. *> \verbatim
  117. *> LDBB is INTEGER
  118. *> The leading dimension of the array BB. LDBB >= KB+1.
  119. *> \endverbatim
  120. *>
  121. *> \param[out] X
  122. *> \verbatim
  123. *> X is COMPLEX array, dimension (LDX,N)
  124. *> If VECT = 'V', the n-by-n matrix X.
  125. *> If VECT = 'N', the array X is not referenced.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LDX
  129. *> \verbatim
  130. *> LDX is INTEGER
  131. *> The leading dimension of the array X.
  132. *> LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
  133. *> \endverbatim
  134. *>
  135. *> \param[out] WORK
  136. *> \verbatim
  137. *> WORK is COMPLEX array, dimension (N)
  138. *> \endverbatim
  139. *>
  140. *> \param[out] RWORK
  141. *> \verbatim
  142. *> RWORK is REAL array, dimension (N)
  143. *> \endverbatim
  144. *>
  145. *> \param[out] INFO
  146. *> \verbatim
  147. *> INFO is INTEGER
  148. *> = 0: successful exit
  149. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  150. *> \endverbatim
  151. *
  152. * Authors:
  153. * ========
  154. *
  155. *> \author Univ. of Tennessee
  156. *> \author Univ. of California Berkeley
  157. *> \author Univ. of Colorado Denver
  158. *> \author NAG Ltd.
  159. *
  160. *> \ingroup complexOTHERcomputational
  161. *
  162. * =====================================================================
  163. SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
  164. $ LDX, WORK, RWORK, INFO )
  165. *
  166. * -- LAPACK computational routine --
  167. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  168. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  169. *
  170. * .. Scalar Arguments ..
  171. CHARACTER UPLO, VECT
  172. INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N
  173. * ..
  174. * .. Array Arguments ..
  175. REAL RWORK( * )
  176. COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
  177. $ X( LDX, * )
  178. * ..
  179. *
  180. * =====================================================================
  181. *
  182. * .. Parameters ..
  183. COMPLEX CZERO, CONE
  184. REAL ONE
  185. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  186. $ CONE = ( 1.0E+0, 0.0E+0 ), ONE = 1.0E+0 )
  187. * ..
  188. * .. Local Scalars ..
  189. LOGICAL UPDATE, UPPER, WANTX
  190. INTEGER I, I0, I1, I2, INCA, J, J1, J1T, J2, J2T, K,
  191. $ KA1, KB1, KBT, L, M, NR, NRT, NX
  192. REAL BII
  193. COMPLEX RA, RA1, T
  194. * ..
  195. * .. External Functions ..
  196. LOGICAL LSAME
  197. EXTERNAL LSAME
  198. * ..
  199. * .. External Subroutines ..
  200. EXTERNAL CGERC, CGERU, CLACGV, CLAR2V, CLARGV, CLARTG,
  201. $ CLARTV, CLASET, CROT, CSSCAL, XERBLA
  202. * ..
  203. * .. Intrinsic Functions ..
  204. INTRINSIC CONJG, MAX, MIN, REAL
  205. * ..
  206. * .. Executable Statements ..
  207. *
  208. * Test the input parameters
  209. *
  210. WANTX = LSAME( VECT, 'V' )
  211. UPPER = LSAME( UPLO, 'U' )
  212. KA1 = KA + 1
  213. KB1 = KB + 1
  214. INFO = 0
  215. IF( .NOT.WANTX .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
  216. INFO = -1
  217. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  218. INFO = -2
  219. ELSE IF( N.LT.0 ) THEN
  220. INFO = -3
  221. ELSE IF( KA.LT.0 ) THEN
  222. INFO = -4
  223. ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
  224. INFO = -5
  225. ELSE IF( LDAB.LT.KA+1 ) THEN
  226. INFO = -7
  227. ELSE IF( LDBB.LT.KB+1 ) THEN
  228. INFO = -9
  229. ELSE IF( LDX.LT.1 .OR. WANTX .AND. LDX.LT.MAX( 1, N ) ) THEN
  230. INFO = -11
  231. END IF
  232. IF( INFO.NE.0 ) THEN
  233. CALL XERBLA( 'CHBGST', -INFO )
  234. RETURN
  235. END IF
  236. *
  237. * Quick return if possible
  238. *
  239. IF( N.EQ.0 )
  240. $ RETURN
  241. *
  242. INCA = LDAB*KA1
  243. *
  244. * Initialize X to the unit matrix, if needed
  245. *
  246. IF( WANTX )
  247. $ CALL CLASET( 'Full', N, N, CZERO, CONE, X, LDX )
  248. *
  249. * Set M to the splitting point m. It must be the same value as is
  250. * used in CPBSTF. The chosen value allows the arrays WORK and RWORK
  251. * to be of dimension (N).
  252. *
  253. M = ( N+KB ) / 2
  254. *
  255. * The routine works in two phases, corresponding to the two halves
  256. * of the split Cholesky factorization of B as S**H*S where
  257. *
  258. * S = ( U )
  259. * ( M L )
  260. *
  261. * with U upper triangular of order m, and L lower triangular of
  262. * order n-m. S has the same bandwidth as B.
  263. *
  264. * S is treated as a product of elementary matrices:
  265. *
  266. * S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n)
  267. *
  268. * where S(i) is determined by the i-th row of S.
  269. *
  270. * In phase 1, the index i takes the values n, n-1, ... , m+1;
  271. * in phase 2, it takes the values 1, 2, ... , m.
  272. *
  273. * For each value of i, the current matrix A is updated by forming
  274. * inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside
  275. * the band of A. The bulge is then pushed down toward the bottom of
  276. * A in phase 1, and up toward the top of A in phase 2, by applying
  277. * plane rotations.
  278. *
  279. * There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1
  280. * of them are linearly independent, so annihilating a bulge requires
  281. * only 2*kb-1 plane rotations. The rotations are divided into a 1st
  282. * set of kb-1 rotations, and a 2nd set of kb rotations.
  283. *
  284. * Wherever possible, rotations are generated and applied in vector
  285. * operations of length NR between the indices J1 and J2 (sometimes
  286. * replaced by modified values NRT, J1T or J2T).
  287. *
  288. * The real cosines and complex sines of the rotations are stored in
  289. * the arrays RWORK and WORK, those of the 1st set in elements
  290. * 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n.
  291. *
  292. * The bulges are not formed explicitly; nonzero elements outside the
  293. * band are created only when they are required for generating new
  294. * rotations; they are stored in the array WORK, in positions where
  295. * they are later overwritten by the sines of the rotations which
  296. * annihilate them.
  297. *
  298. * **************************** Phase 1 *****************************
  299. *
  300. * The logical structure of this phase is:
  301. *
  302. * UPDATE = .TRUE.
  303. * DO I = N, M + 1, -1
  304. * use S(i) to update A and create a new bulge
  305. * apply rotations to push all bulges KA positions downward
  306. * END DO
  307. * UPDATE = .FALSE.
  308. * DO I = M + KA + 1, N - 1
  309. * apply rotations to push all bulges KA positions downward
  310. * END DO
  311. *
  312. * To avoid duplicating code, the two loops are merged.
  313. *
  314. UPDATE = .TRUE.
  315. I = N + 1
  316. 10 CONTINUE
  317. IF( UPDATE ) THEN
  318. I = I - 1
  319. KBT = MIN( KB, I-1 )
  320. I0 = I - 1
  321. I1 = MIN( N, I+KA )
  322. I2 = I - KBT + KA1
  323. IF( I.LT.M+1 ) THEN
  324. UPDATE = .FALSE.
  325. I = I + 1
  326. I0 = M
  327. IF( KA.EQ.0 )
  328. $ GO TO 480
  329. GO TO 10
  330. END IF
  331. ELSE
  332. I = I + KA
  333. IF( I.GT.N-1 )
  334. $ GO TO 480
  335. END IF
  336. *
  337. IF( UPPER ) THEN
  338. *
  339. * Transform A, working with the upper triangle
  340. *
  341. IF( UPDATE ) THEN
  342. *
  343. * Form inv(S(i))**H * A * inv(S(i))
  344. *
  345. BII = REAL( BB( KB1, I ) )
  346. AB( KA1, I ) = ( REAL( AB( KA1, I ) ) / BII ) / BII
  347. DO 20 J = I + 1, I1
  348. AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
  349. 20 CONTINUE
  350. DO 30 J = MAX( 1, I-KA ), I - 1
  351. AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
  352. 30 CONTINUE
  353. DO 60 K = I - KBT, I - 1
  354. DO 40 J = I - KBT, K
  355. AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
  356. $ BB( J-I+KB1, I )*
  357. $ CONJG( AB( K-I+KA1, I ) ) -
  358. $ CONJG( BB( K-I+KB1, I ) )*
  359. $ AB( J-I+KA1, I ) +
  360. $ REAL( AB( KA1, I ) )*
  361. $ BB( J-I+KB1, I )*
  362. $ CONJG( BB( K-I+KB1, I ) )
  363. 40 CONTINUE
  364. DO 50 J = MAX( 1, I-KA ), I - KBT - 1
  365. AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
  366. $ CONJG( BB( K-I+KB1, I ) )*
  367. $ AB( J-I+KA1, I )
  368. 50 CONTINUE
  369. 60 CONTINUE
  370. DO 80 J = I, I1
  371. DO 70 K = MAX( J-KA, I-KBT ), I - 1
  372. AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
  373. $ BB( K-I+KB1, I )*AB( I-J+KA1, J )
  374. 70 CONTINUE
  375. 80 CONTINUE
  376. *
  377. IF( WANTX ) THEN
  378. *
  379. * post-multiply X by inv(S(i))
  380. *
  381. CALL CSSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
  382. IF( KBT.GT.0 )
  383. $ CALL CGERC( N-M, KBT, -CONE, X( M+1, I ), 1,
  384. $ BB( KB1-KBT, I ), 1, X( M+1, I-KBT ),
  385. $ LDX )
  386. END IF
  387. *
  388. * store a(i,i1) in RA1 for use in next loop over K
  389. *
  390. RA1 = AB( I-I1+KA1, I1 )
  391. END IF
  392. *
  393. * Generate and apply vectors of rotations to chase all the
  394. * existing bulges KA positions down toward the bottom of the
  395. * band
  396. *
  397. DO 130 K = 1, KB - 1
  398. IF( UPDATE ) THEN
  399. *
  400. * Determine the rotations which would annihilate the bulge
  401. * which has in theory just been created
  402. *
  403. IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
  404. *
  405. * generate rotation to annihilate a(i,i-k+ka+1)
  406. *
  407. CALL CLARTG( AB( K+1, I-K+KA ), RA1,
  408. $ RWORK( I-K+KA-M ), WORK( I-K+KA-M ), RA )
  409. *
  410. * create nonzero element a(i-k,i-k+ka+1) outside the
  411. * band and store it in WORK(i-k)
  412. *
  413. T = -BB( KB1-K, I )*RA1
  414. WORK( I-K ) = RWORK( I-K+KA-M )*T -
  415. $ CONJG( WORK( I-K+KA-M ) )*
  416. $ AB( 1, I-K+KA )
  417. AB( 1, I-K+KA ) = WORK( I-K+KA-M )*T +
  418. $ RWORK( I-K+KA-M )*AB( 1, I-K+KA )
  419. RA1 = RA
  420. END IF
  421. END IF
  422. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  423. NR = ( N-J2+KA ) / KA1
  424. J1 = J2 + ( NR-1 )*KA1
  425. IF( UPDATE ) THEN
  426. J2T = MAX( J2, I+2*KA-K+1 )
  427. ELSE
  428. J2T = J2
  429. END IF
  430. NRT = ( N-J2T+KA ) / KA1
  431. DO 90 J = J2T, J1, KA1
  432. *
  433. * create nonzero element a(j-ka,j+1) outside the band
  434. * and store it in WORK(j-m)
  435. *
  436. WORK( J-M ) = WORK( J-M )*AB( 1, J+1 )
  437. AB( 1, J+1 ) = RWORK( J-M )*AB( 1, J+1 )
  438. 90 CONTINUE
  439. *
  440. * generate rotations in 1st set to annihilate elements which
  441. * have been created outside the band
  442. *
  443. IF( NRT.GT.0 )
  444. $ CALL CLARGV( NRT, AB( 1, J2T ), INCA, WORK( J2T-M ), KA1,
  445. $ RWORK( J2T-M ), KA1 )
  446. IF( NR.GT.0 ) THEN
  447. *
  448. * apply rotations in 1st set from the right
  449. *
  450. DO 100 L = 1, KA - 1
  451. CALL CLARTV( NR, AB( KA1-L, J2 ), INCA,
  452. $ AB( KA-L, J2+1 ), INCA, RWORK( J2-M ),
  453. $ WORK( J2-M ), KA1 )
  454. 100 CONTINUE
  455. *
  456. * apply rotations in 1st set from both sides to diagonal
  457. * blocks
  458. *
  459. CALL CLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
  460. $ AB( KA, J2+1 ), INCA, RWORK( J2-M ),
  461. $ WORK( J2-M ), KA1 )
  462. *
  463. CALL CLACGV( NR, WORK( J2-M ), KA1 )
  464. END IF
  465. *
  466. * start applying rotations in 1st set from the left
  467. *
  468. DO 110 L = KA - 1, KB - K + 1, -1
  469. NRT = ( N-J2+L ) / KA1
  470. IF( NRT.GT.0 )
  471. $ CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
  472. $ AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
  473. $ WORK( J2-M ), KA1 )
  474. 110 CONTINUE
  475. *
  476. IF( WANTX ) THEN
  477. *
  478. * post-multiply X by product of rotations in 1st set
  479. *
  480. DO 120 J = J2, J1, KA1
  481. CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  482. $ RWORK( J-M ), CONJG( WORK( J-M ) ) )
  483. 120 CONTINUE
  484. END IF
  485. 130 CONTINUE
  486. *
  487. IF( UPDATE ) THEN
  488. IF( I2.LE.N .AND. KBT.GT.0 ) THEN
  489. *
  490. * create nonzero element a(i-kbt,i-kbt+ka+1) outside the
  491. * band and store it in WORK(i-kbt)
  492. *
  493. WORK( I-KBT ) = -BB( KB1-KBT, I )*RA1
  494. END IF
  495. END IF
  496. *
  497. DO 170 K = KB, 1, -1
  498. IF( UPDATE ) THEN
  499. J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
  500. ELSE
  501. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  502. END IF
  503. *
  504. * finish applying rotations in 2nd set from the left
  505. *
  506. DO 140 L = KB - K, 1, -1
  507. NRT = ( N-J2+KA+L ) / KA1
  508. IF( NRT.GT.0 )
  509. $ CALL CLARTV( NRT, AB( L, J2-L+1 ), INCA,
  510. $ AB( L+1, J2-L+1 ), INCA, RWORK( J2-KA ),
  511. $ WORK( J2-KA ), KA1 )
  512. 140 CONTINUE
  513. NR = ( N-J2+KA ) / KA1
  514. J1 = J2 + ( NR-1 )*KA1
  515. DO 150 J = J1, J2, -KA1
  516. WORK( J ) = WORK( J-KA )
  517. RWORK( J ) = RWORK( J-KA )
  518. 150 CONTINUE
  519. DO 160 J = J2, J1, KA1
  520. *
  521. * create nonzero element a(j-ka,j+1) outside the band
  522. * and store it in WORK(j)
  523. *
  524. WORK( J ) = WORK( J )*AB( 1, J+1 )
  525. AB( 1, J+1 ) = RWORK( J )*AB( 1, J+1 )
  526. 160 CONTINUE
  527. IF( UPDATE ) THEN
  528. IF( I-K.LT.N-KA .AND. K.LE.KBT )
  529. $ WORK( I-K+KA ) = WORK( I-K )
  530. END IF
  531. 170 CONTINUE
  532. *
  533. DO 210 K = KB, 1, -1
  534. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  535. NR = ( N-J2+KA ) / KA1
  536. J1 = J2 + ( NR-1 )*KA1
  537. IF( NR.GT.0 ) THEN
  538. *
  539. * generate rotations in 2nd set to annihilate elements
  540. * which have been created outside the band
  541. *
  542. CALL CLARGV( NR, AB( 1, J2 ), INCA, WORK( J2 ), KA1,
  543. $ RWORK( J2 ), KA1 )
  544. *
  545. * apply rotations in 2nd set from the right
  546. *
  547. DO 180 L = 1, KA - 1
  548. CALL CLARTV( NR, AB( KA1-L, J2 ), INCA,
  549. $ AB( KA-L, J2+1 ), INCA, RWORK( J2 ),
  550. $ WORK( J2 ), KA1 )
  551. 180 CONTINUE
  552. *
  553. * apply rotations in 2nd set from both sides to diagonal
  554. * blocks
  555. *
  556. CALL CLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
  557. $ AB( KA, J2+1 ), INCA, RWORK( J2 ),
  558. $ WORK( J2 ), KA1 )
  559. *
  560. CALL CLACGV( NR, WORK( J2 ), KA1 )
  561. END IF
  562. *
  563. * start applying rotations in 2nd set from the left
  564. *
  565. DO 190 L = KA - 1, KB - K + 1, -1
  566. NRT = ( N-J2+L ) / KA1
  567. IF( NRT.GT.0 )
  568. $ CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
  569. $ AB( L+1, J2+KA1-L ), INCA, RWORK( J2 ),
  570. $ WORK( J2 ), KA1 )
  571. 190 CONTINUE
  572. *
  573. IF( WANTX ) THEN
  574. *
  575. * post-multiply X by product of rotations in 2nd set
  576. *
  577. DO 200 J = J2, J1, KA1
  578. CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  579. $ RWORK( J ), CONJG( WORK( J ) ) )
  580. 200 CONTINUE
  581. END IF
  582. 210 CONTINUE
  583. *
  584. DO 230 K = 1, KB - 1
  585. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  586. *
  587. * finish applying rotations in 1st set from the left
  588. *
  589. DO 220 L = KB - K, 1, -1
  590. NRT = ( N-J2+L ) / KA1
  591. IF( NRT.GT.0 )
  592. $ CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
  593. $ AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
  594. $ WORK( J2-M ), KA1 )
  595. 220 CONTINUE
  596. 230 CONTINUE
  597. *
  598. IF( KB.GT.1 ) THEN
  599. DO 240 J = N - 1, J2 + KA, -1
  600. RWORK( J-M ) = RWORK( J-KA-M )
  601. WORK( J-M ) = WORK( J-KA-M )
  602. 240 CONTINUE
  603. END IF
  604. *
  605. ELSE
  606. *
  607. * Transform A, working with the lower triangle
  608. *
  609. IF( UPDATE ) THEN
  610. *
  611. * Form inv(S(i))**H * A * inv(S(i))
  612. *
  613. BII = REAL( BB( 1, I ) )
  614. AB( 1, I ) = ( REAL( AB( 1, I ) ) / BII ) / BII
  615. DO 250 J = I + 1, I1
  616. AB( J-I+1, I ) = AB( J-I+1, I ) / BII
  617. 250 CONTINUE
  618. DO 260 J = MAX( 1, I-KA ), I - 1
  619. AB( I-J+1, J ) = AB( I-J+1, J ) / BII
  620. 260 CONTINUE
  621. DO 290 K = I - KBT, I - 1
  622. DO 270 J = I - KBT, K
  623. AB( K-J+1, J ) = AB( K-J+1, J ) -
  624. $ BB( I-J+1, J )*CONJG( AB( I-K+1,
  625. $ K ) ) - CONJG( BB( I-K+1, K ) )*
  626. $ AB( I-J+1, J ) + REAL( AB( 1, I ) )*
  627. $ BB( I-J+1, J )*CONJG( BB( I-K+1,
  628. $ K ) )
  629. 270 CONTINUE
  630. DO 280 J = MAX( 1, I-KA ), I - KBT - 1
  631. AB( K-J+1, J ) = AB( K-J+1, J ) -
  632. $ CONJG( BB( I-K+1, K ) )*
  633. $ AB( I-J+1, J )
  634. 280 CONTINUE
  635. 290 CONTINUE
  636. DO 310 J = I, I1
  637. DO 300 K = MAX( J-KA, I-KBT ), I - 1
  638. AB( J-K+1, K ) = AB( J-K+1, K ) -
  639. $ BB( I-K+1, K )*AB( J-I+1, I )
  640. 300 CONTINUE
  641. 310 CONTINUE
  642. *
  643. IF( WANTX ) THEN
  644. *
  645. * post-multiply X by inv(S(i))
  646. *
  647. CALL CSSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
  648. IF( KBT.GT.0 )
  649. $ CALL CGERU( N-M, KBT, -CONE, X( M+1, I ), 1,
  650. $ BB( KBT+1, I-KBT ), LDBB-1,
  651. $ X( M+1, I-KBT ), LDX )
  652. END IF
  653. *
  654. * store a(i1,i) in RA1 for use in next loop over K
  655. *
  656. RA1 = AB( I1-I+1, I )
  657. END IF
  658. *
  659. * Generate and apply vectors of rotations to chase all the
  660. * existing bulges KA positions down toward the bottom of the
  661. * band
  662. *
  663. DO 360 K = 1, KB - 1
  664. IF( UPDATE ) THEN
  665. *
  666. * Determine the rotations which would annihilate the bulge
  667. * which has in theory just been created
  668. *
  669. IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
  670. *
  671. * generate rotation to annihilate a(i-k+ka+1,i)
  672. *
  673. CALL CLARTG( AB( KA1-K, I ), RA1, RWORK( I-K+KA-M ),
  674. $ WORK( I-K+KA-M ), RA )
  675. *
  676. * create nonzero element a(i-k+ka+1,i-k) outside the
  677. * band and store it in WORK(i-k)
  678. *
  679. T = -BB( K+1, I-K )*RA1
  680. WORK( I-K ) = RWORK( I-K+KA-M )*T -
  681. $ CONJG( WORK( I-K+KA-M ) )*AB( KA1, I-K )
  682. AB( KA1, I-K ) = WORK( I-K+KA-M )*T +
  683. $ RWORK( I-K+KA-M )*AB( KA1, I-K )
  684. RA1 = RA
  685. END IF
  686. END IF
  687. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  688. NR = ( N-J2+KA ) / KA1
  689. J1 = J2 + ( NR-1 )*KA1
  690. IF( UPDATE ) THEN
  691. J2T = MAX( J2, I+2*KA-K+1 )
  692. ELSE
  693. J2T = J2
  694. END IF
  695. NRT = ( N-J2T+KA ) / KA1
  696. DO 320 J = J2T, J1, KA1
  697. *
  698. * create nonzero element a(j+1,j-ka) outside the band
  699. * and store it in WORK(j-m)
  700. *
  701. WORK( J-M ) = WORK( J-M )*AB( KA1, J-KA+1 )
  702. AB( KA1, J-KA+1 ) = RWORK( J-M )*AB( KA1, J-KA+1 )
  703. 320 CONTINUE
  704. *
  705. * generate rotations in 1st set to annihilate elements which
  706. * have been created outside the band
  707. *
  708. IF( NRT.GT.0 )
  709. $ CALL CLARGV( NRT, AB( KA1, J2T-KA ), INCA, WORK( J2T-M ),
  710. $ KA1, RWORK( J2T-M ), KA1 )
  711. IF( NR.GT.0 ) THEN
  712. *
  713. * apply rotations in 1st set from the left
  714. *
  715. DO 330 L = 1, KA - 1
  716. CALL CLARTV( NR, AB( L+1, J2-L ), INCA,
  717. $ AB( L+2, J2-L ), INCA, RWORK( J2-M ),
  718. $ WORK( J2-M ), KA1 )
  719. 330 CONTINUE
  720. *
  721. * apply rotations in 1st set from both sides to diagonal
  722. * blocks
  723. *
  724. CALL CLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
  725. $ INCA, RWORK( J2-M ), WORK( J2-M ), KA1 )
  726. *
  727. CALL CLACGV( NR, WORK( J2-M ), KA1 )
  728. END IF
  729. *
  730. * start applying rotations in 1st set from the right
  731. *
  732. DO 340 L = KA - 1, KB - K + 1, -1
  733. NRT = ( N-J2+L ) / KA1
  734. IF( NRT.GT.0 )
  735. $ CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
  736. $ AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
  737. $ WORK( J2-M ), KA1 )
  738. 340 CONTINUE
  739. *
  740. IF( WANTX ) THEN
  741. *
  742. * post-multiply X by product of rotations in 1st set
  743. *
  744. DO 350 J = J2, J1, KA1
  745. CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  746. $ RWORK( J-M ), WORK( J-M ) )
  747. 350 CONTINUE
  748. END IF
  749. 360 CONTINUE
  750. *
  751. IF( UPDATE ) THEN
  752. IF( I2.LE.N .AND. KBT.GT.0 ) THEN
  753. *
  754. * create nonzero element a(i-kbt+ka+1,i-kbt) outside the
  755. * band and store it in WORK(i-kbt)
  756. *
  757. WORK( I-KBT ) = -BB( KBT+1, I-KBT )*RA1
  758. END IF
  759. END IF
  760. *
  761. DO 400 K = KB, 1, -1
  762. IF( UPDATE ) THEN
  763. J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
  764. ELSE
  765. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  766. END IF
  767. *
  768. * finish applying rotations in 2nd set from the right
  769. *
  770. DO 370 L = KB - K, 1, -1
  771. NRT = ( N-J2+KA+L ) / KA1
  772. IF( NRT.GT.0 )
  773. $ CALL CLARTV( NRT, AB( KA1-L+1, J2-KA ), INCA,
  774. $ AB( KA1-L, J2-KA+1 ), INCA,
  775. $ RWORK( J2-KA ), WORK( J2-KA ), KA1 )
  776. 370 CONTINUE
  777. NR = ( N-J2+KA ) / KA1
  778. J1 = J2 + ( NR-1 )*KA1
  779. DO 380 J = J1, J2, -KA1
  780. WORK( J ) = WORK( J-KA )
  781. RWORK( J ) = RWORK( J-KA )
  782. 380 CONTINUE
  783. DO 390 J = J2, J1, KA1
  784. *
  785. * create nonzero element a(j+1,j-ka) outside the band
  786. * and store it in WORK(j)
  787. *
  788. WORK( J ) = WORK( J )*AB( KA1, J-KA+1 )
  789. AB( KA1, J-KA+1 ) = RWORK( J )*AB( KA1, J-KA+1 )
  790. 390 CONTINUE
  791. IF( UPDATE ) THEN
  792. IF( I-K.LT.N-KA .AND. K.LE.KBT )
  793. $ WORK( I-K+KA ) = WORK( I-K )
  794. END IF
  795. 400 CONTINUE
  796. *
  797. DO 440 K = KB, 1, -1
  798. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  799. NR = ( N-J2+KA ) / KA1
  800. J1 = J2 + ( NR-1 )*KA1
  801. IF( NR.GT.0 ) THEN
  802. *
  803. * generate rotations in 2nd set to annihilate elements
  804. * which have been created outside the band
  805. *
  806. CALL CLARGV( NR, AB( KA1, J2-KA ), INCA, WORK( J2 ), KA1,
  807. $ RWORK( J2 ), KA1 )
  808. *
  809. * apply rotations in 2nd set from the left
  810. *
  811. DO 410 L = 1, KA - 1
  812. CALL CLARTV( NR, AB( L+1, J2-L ), INCA,
  813. $ AB( L+2, J2-L ), INCA, RWORK( J2 ),
  814. $ WORK( J2 ), KA1 )
  815. 410 CONTINUE
  816. *
  817. * apply rotations in 2nd set from both sides to diagonal
  818. * blocks
  819. *
  820. CALL CLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
  821. $ INCA, RWORK( J2 ), WORK( J2 ), KA1 )
  822. *
  823. CALL CLACGV( NR, WORK( J2 ), KA1 )
  824. END IF
  825. *
  826. * start applying rotations in 2nd set from the right
  827. *
  828. DO 420 L = KA - 1, KB - K + 1, -1
  829. NRT = ( N-J2+L ) / KA1
  830. IF( NRT.GT.0 )
  831. $ CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
  832. $ AB( KA1-L, J2+1 ), INCA, RWORK( J2 ),
  833. $ WORK( J2 ), KA1 )
  834. 420 CONTINUE
  835. *
  836. IF( WANTX ) THEN
  837. *
  838. * post-multiply X by product of rotations in 2nd set
  839. *
  840. DO 430 J = J2, J1, KA1
  841. CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  842. $ RWORK( J ), WORK( J ) )
  843. 430 CONTINUE
  844. END IF
  845. 440 CONTINUE
  846. *
  847. DO 460 K = 1, KB - 1
  848. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  849. *
  850. * finish applying rotations in 1st set from the right
  851. *
  852. DO 450 L = KB - K, 1, -1
  853. NRT = ( N-J2+L ) / KA1
  854. IF( NRT.GT.0 )
  855. $ CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
  856. $ AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
  857. $ WORK( J2-M ), KA1 )
  858. 450 CONTINUE
  859. 460 CONTINUE
  860. *
  861. IF( KB.GT.1 ) THEN
  862. DO 470 J = N - 1, J2 + KA, -1
  863. RWORK( J-M ) = RWORK( J-KA-M )
  864. WORK( J-M ) = WORK( J-KA-M )
  865. 470 CONTINUE
  866. END IF
  867. *
  868. END IF
  869. *
  870. GO TO 10
  871. *
  872. 480 CONTINUE
  873. *
  874. * **************************** Phase 2 *****************************
  875. *
  876. * The logical structure of this phase is:
  877. *
  878. * UPDATE = .TRUE.
  879. * DO I = 1, M
  880. * use S(i) to update A and create a new bulge
  881. * apply rotations to push all bulges KA positions upward
  882. * END DO
  883. * UPDATE = .FALSE.
  884. * DO I = M - KA - 1, 2, -1
  885. * apply rotations to push all bulges KA positions upward
  886. * END DO
  887. *
  888. * To avoid duplicating code, the two loops are merged.
  889. *
  890. UPDATE = .TRUE.
  891. I = 0
  892. 490 CONTINUE
  893. IF( UPDATE ) THEN
  894. I = I + 1
  895. KBT = MIN( KB, M-I )
  896. I0 = I + 1
  897. I1 = MAX( 1, I-KA )
  898. I2 = I + KBT - KA1
  899. IF( I.GT.M ) THEN
  900. UPDATE = .FALSE.
  901. I = I - 1
  902. I0 = M + 1
  903. IF( KA.EQ.0 )
  904. $ RETURN
  905. GO TO 490
  906. END IF
  907. ELSE
  908. I = I - KA
  909. IF( I.LT.2 )
  910. $ RETURN
  911. END IF
  912. *
  913. IF( I.LT.M-KBT ) THEN
  914. NX = M
  915. ELSE
  916. NX = N
  917. END IF
  918. *
  919. IF( UPPER ) THEN
  920. *
  921. * Transform A, working with the upper triangle
  922. *
  923. IF( UPDATE ) THEN
  924. *
  925. * Form inv(S(i))**H * A * inv(S(i))
  926. *
  927. BII = REAL( BB( KB1, I ) )
  928. AB( KA1, I ) = ( REAL( AB( KA1, I ) ) / BII ) / BII
  929. DO 500 J = I1, I - 1
  930. AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
  931. 500 CONTINUE
  932. DO 510 J = I + 1, MIN( N, I+KA )
  933. AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
  934. 510 CONTINUE
  935. DO 540 K = I + 1, I + KBT
  936. DO 520 J = K, I + KBT
  937. AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
  938. $ BB( I-J+KB1, J )*
  939. $ CONJG( AB( I-K+KA1, K ) ) -
  940. $ CONJG( BB( I-K+KB1, K ) )*
  941. $ AB( I-J+KA1, J ) +
  942. $ REAL( AB( KA1, I ) )*
  943. $ BB( I-J+KB1, J )*
  944. $ CONJG( BB( I-K+KB1, K ) )
  945. 520 CONTINUE
  946. DO 530 J = I + KBT + 1, MIN( N, I+KA )
  947. AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
  948. $ CONJG( BB( I-K+KB1, K ) )*
  949. $ AB( I-J+KA1, J )
  950. 530 CONTINUE
  951. 540 CONTINUE
  952. DO 560 J = I1, I
  953. DO 550 K = I + 1, MIN( J+KA, I+KBT )
  954. AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
  955. $ BB( I-K+KB1, K )*AB( J-I+KA1, I )
  956. 550 CONTINUE
  957. 560 CONTINUE
  958. *
  959. IF( WANTX ) THEN
  960. *
  961. * post-multiply X by inv(S(i))
  962. *
  963. CALL CSSCAL( NX, ONE / BII, X( 1, I ), 1 )
  964. IF( KBT.GT.0 )
  965. $ CALL CGERU( NX, KBT, -CONE, X( 1, I ), 1,
  966. $ BB( KB, I+1 ), LDBB-1, X( 1, I+1 ), LDX )
  967. END IF
  968. *
  969. * store a(i1,i) in RA1 for use in next loop over K
  970. *
  971. RA1 = AB( I1-I+KA1, I )
  972. END IF
  973. *
  974. * Generate and apply vectors of rotations to chase all the
  975. * existing bulges KA positions up toward the top of the band
  976. *
  977. DO 610 K = 1, KB - 1
  978. IF( UPDATE ) THEN
  979. *
  980. * Determine the rotations which would annihilate the bulge
  981. * which has in theory just been created
  982. *
  983. IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
  984. *
  985. * generate rotation to annihilate a(i+k-ka-1,i)
  986. *
  987. CALL CLARTG( AB( K+1, I ), RA1, RWORK( I+K-KA ),
  988. $ WORK( I+K-KA ), RA )
  989. *
  990. * create nonzero element a(i+k-ka-1,i+k) outside the
  991. * band and store it in WORK(m-kb+i+k)
  992. *
  993. T = -BB( KB1-K, I+K )*RA1
  994. WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
  995. $ CONJG( WORK( I+K-KA ) )*
  996. $ AB( 1, I+K )
  997. AB( 1, I+K ) = WORK( I+K-KA )*T +
  998. $ RWORK( I+K-KA )*AB( 1, I+K )
  999. RA1 = RA
  1000. END IF
  1001. END IF
  1002. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1003. NR = ( J2+KA-1 ) / KA1
  1004. J1 = J2 - ( NR-1 )*KA1
  1005. IF( UPDATE ) THEN
  1006. J2T = MIN( J2, I-2*KA+K-1 )
  1007. ELSE
  1008. J2T = J2
  1009. END IF
  1010. NRT = ( J2T+KA-1 ) / KA1
  1011. DO 570 J = J1, J2T, KA1
  1012. *
  1013. * create nonzero element a(j-1,j+ka) outside the band
  1014. * and store it in WORK(j)
  1015. *
  1016. WORK( J ) = WORK( J )*AB( 1, J+KA-1 )
  1017. AB( 1, J+KA-1 ) = RWORK( J )*AB( 1, J+KA-1 )
  1018. 570 CONTINUE
  1019. *
  1020. * generate rotations in 1st set to annihilate elements which
  1021. * have been created outside the band
  1022. *
  1023. IF( NRT.GT.0 )
  1024. $ CALL CLARGV( NRT, AB( 1, J1+KA ), INCA, WORK( J1 ), KA1,
  1025. $ RWORK( J1 ), KA1 )
  1026. IF( NR.GT.0 ) THEN
  1027. *
  1028. * apply rotations in 1st set from the left
  1029. *
  1030. DO 580 L = 1, KA - 1
  1031. CALL CLARTV( NR, AB( KA1-L, J1+L ), INCA,
  1032. $ AB( KA-L, J1+L ), INCA, RWORK( J1 ),
  1033. $ WORK( J1 ), KA1 )
  1034. 580 CONTINUE
  1035. *
  1036. * apply rotations in 1st set from both sides to diagonal
  1037. * blocks
  1038. *
  1039. CALL CLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
  1040. $ AB( KA, J1 ), INCA, RWORK( J1 ), WORK( J1 ),
  1041. $ KA1 )
  1042. *
  1043. CALL CLACGV( NR, WORK( J1 ), KA1 )
  1044. END IF
  1045. *
  1046. * start applying rotations in 1st set from the right
  1047. *
  1048. DO 590 L = KA - 1, KB - K + 1, -1
  1049. NRT = ( J2+L-1 ) / KA1
  1050. J1T = J2 - ( NRT-1 )*KA1
  1051. IF( NRT.GT.0 )
  1052. $ CALL CLARTV( NRT, AB( L, J1T ), INCA,
  1053. $ AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
  1054. $ WORK( J1T ), KA1 )
  1055. 590 CONTINUE
  1056. *
  1057. IF( WANTX ) THEN
  1058. *
  1059. * post-multiply X by product of rotations in 1st set
  1060. *
  1061. DO 600 J = J1, J2, KA1
  1062. CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1063. $ RWORK( J ), WORK( J ) )
  1064. 600 CONTINUE
  1065. END IF
  1066. 610 CONTINUE
  1067. *
  1068. IF( UPDATE ) THEN
  1069. IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
  1070. *
  1071. * create nonzero element a(i+kbt-ka-1,i+kbt) outside the
  1072. * band and store it in WORK(m-kb+i+kbt)
  1073. *
  1074. WORK( M-KB+I+KBT ) = -BB( KB1-KBT, I+KBT )*RA1
  1075. END IF
  1076. END IF
  1077. *
  1078. DO 650 K = KB, 1, -1
  1079. IF( UPDATE ) THEN
  1080. J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
  1081. ELSE
  1082. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1083. END IF
  1084. *
  1085. * finish applying rotations in 2nd set from the right
  1086. *
  1087. DO 620 L = KB - K, 1, -1
  1088. NRT = ( J2+KA+L-1 ) / KA1
  1089. J1T = J2 - ( NRT-1 )*KA1
  1090. IF( NRT.GT.0 )
  1091. $ CALL CLARTV( NRT, AB( L, J1T+KA ), INCA,
  1092. $ AB( L+1, J1T+KA-1 ), INCA,
  1093. $ RWORK( M-KB+J1T+KA ),
  1094. $ WORK( M-KB+J1T+KA ), KA1 )
  1095. 620 CONTINUE
  1096. NR = ( J2+KA-1 ) / KA1
  1097. J1 = J2 - ( NR-1 )*KA1
  1098. DO 630 J = J1, J2, KA1
  1099. WORK( M-KB+J ) = WORK( M-KB+J+KA )
  1100. RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
  1101. 630 CONTINUE
  1102. DO 640 J = J1, J2, KA1
  1103. *
  1104. * create nonzero element a(j-1,j+ka) outside the band
  1105. * and store it in WORK(m-kb+j)
  1106. *
  1107. WORK( M-KB+J ) = WORK( M-KB+J )*AB( 1, J+KA-1 )
  1108. AB( 1, J+KA-1 ) = RWORK( M-KB+J )*AB( 1, J+KA-1 )
  1109. 640 CONTINUE
  1110. IF( UPDATE ) THEN
  1111. IF( I+K.GT.KA1 .AND. K.LE.KBT )
  1112. $ WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
  1113. END IF
  1114. 650 CONTINUE
  1115. *
  1116. DO 690 K = KB, 1, -1
  1117. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1118. NR = ( J2+KA-1 ) / KA1
  1119. J1 = J2 - ( NR-1 )*KA1
  1120. IF( NR.GT.0 ) THEN
  1121. *
  1122. * generate rotations in 2nd set to annihilate elements
  1123. * which have been created outside the band
  1124. *
  1125. CALL CLARGV( NR, AB( 1, J1+KA ), INCA, WORK( M-KB+J1 ),
  1126. $ KA1, RWORK( M-KB+J1 ), KA1 )
  1127. *
  1128. * apply rotations in 2nd set from the left
  1129. *
  1130. DO 660 L = 1, KA - 1
  1131. CALL CLARTV( NR, AB( KA1-L, J1+L ), INCA,
  1132. $ AB( KA-L, J1+L ), INCA, RWORK( M-KB+J1 ),
  1133. $ WORK( M-KB+J1 ), KA1 )
  1134. 660 CONTINUE
  1135. *
  1136. * apply rotations in 2nd set from both sides to diagonal
  1137. * blocks
  1138. *
  1139. CALL CLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
  1140. $ AB( KA, J1 ), INCA, RWORK( M-KB+J1 ),
  1141. $ WORK( M-KB+J1 ), KA1 )
  1142. *
  1143. CALL CLACGV( NR, WORK( M-KB+J1 ), KA1 )
  1144. END IF
  1145. *
  1146. * start applying rotations in 2nd set from the right
  1147. *
  1148. DO 670 L = KA - 1, KB - K + 1, -1
  1149. NRT = ( J2+L-1 ) / KA1
  1150. J1T = J2 - ( NRT-1 )*KA1
  1151. IF( NRT.GT.0 )
  1152. $ CALL CLARTV( NRT, AB( L, J1T ), INCA,
  1153. $ AB( L+1, J1T-1 ), INCA,
  1154. $ RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
  1155. $ KA1 )
  1156. 670 CONTINUE
  1157. *
  1158. IF( WANTX ) THEN
  1159. *
  1160. * post-multiply X by product of rotations in 2nd set
  1161. *
  1162. DO 680 J = J1, J2, KA1
  1163. CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1164. $ RWORK( M-KB+J ), WORK( M-KB+J ) )
  1165. 680 CONTINUE
  1166. END IF
  1167. 690 CONTINUE
  1168. *
  1169. DO 710 K = 1, KB - 1
  1170. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1171. *
  1172. * finish applying rotations in 1st set from the right
  1173. *
  1174. DO 700 L = KB - K, 1, -1
  1175. NRT = ( J2+L-1 ) / KA1
  1176. J1T = J2 - ( NRT-1 )*KA1
  1177. IF( NRT.GT.0 )
  1178. $ CALL CLARTV( NRT, AB( L, J1T ), INCA,
  1179. $ AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
  1180. $ WORK( J1T ), KA1 )
  1181. 700 CONTINUE
  1182. 710 CONTINUE
  1183. *
  1184. IF( KB.GT.1 ) THEN
  1185. DO 720 J = 2, I2 - KA
  1186. RWORK( J ) = RWORK( J+KA )
  1187. WORK( J ) = WORK( J+KA )
  1188. 720 CONTINUE
  1189. END IF
  1190. *
  1191. ELSE
  1192. *
  1193. * Transform A, working with the lower triangle
  1194. *
  1195. IF( UPDATE ) THEN
  1196. *
  1197. * Form inv(S(i))**H * A * inv(S(i))
  1198. *
  1199. BII = REAL( BB( 1, I ) )
  1200. AB( 1, I ) = ( REAL( AB( 1, I ) ) / BII ) / BII
  1201. DO 730 J = I1, I - 1
  1202. AB( I-J+1, J ) = AB( I-J+1, J ) / BII
  1203. 730 CONTINUE
  1204. DO 740 J = I + 1, MIN( N, I+KA )
  1205. AB( J-I+1, I ) = AB( J-I+1, I ) / BII
  1206. 740 CONTINUE
  1207. DO 770 K = I + 1, I + KBT
  1208. DO 750 J = K, I + KBT
  1209. AB( J-K+1, K ) = AB( J-K+1, K ) -
  1210. $ BB( J-I+1, I )*CONJG( AB( K-I+1,
  1211. $ I ) ) - CONJG( BB( K-I+1, I ) )*
  1212. $ AB( J-I+1, I ) + REAL( AB( 1, I ) )*
  1213. $ BB( J-I+1, I )*CONJG( BB( K-I+1,
  1214. $ I ) )
  1215. 750 CONTINUE
  1216. DO 760 J = I + KBT + 1, MIN( N, I+KA )
  1217. AB( J-K+1, K ) = AB( J-K+1, K ) -
  1218. $ CONJG( BB( K-I+1, I ) )*
  1219. $ AB( J-I+1, I )
  1220. 760 CONTINUE
  1221. 770 CONTINUE
  1222. DO 790 J = I1, I
  1223. DO 780 K = I + 1, MIN( J+KA, I+KBT )
  1224. AB( K-J+1, J ) = AB( K-J+1, J ) -
  1225. $ BB( K-I+1, I )*AB( I-J+1, J )
  1226. 780 CONTINUE
  1227. 790 CONTINUE
  1228. *
  1229. IF( WANTX ) THEN
  1230. *
  1231. * post-multiply X by inv(S(i))
  1232. *
  1233. CALL CSSCAL( NX, ONE / BII, X( 1, I ), 1 )
  1234. IF( KBT.GT.0 )
  1235. $ CALL CGERC( NX, KBT, -CONE, X( 1, I ), 1, BB( 2, I ),
  1236. $ 1, X( 1, I+1 ), LDX )
  1237. END IF
  1238. *
  1239. * store a(i,i1) in RA1 for use in next loop over K
  1240. *
  1241. RA1 = AB( I-I1+1, I1 )
  1242. END IF
  1243. *
  1244. * Generate and apply vectors of rotations to chase all the
  1245. * existing bulges KA positions up toward the top of the band
  1246. *
  1247. DO 840 K = 1, KB - 1
  1248. IF( UPDATE ) THEN
  1249. *
  1250. * Determine the rotations which would annihilate the bulge
  1251. * which has in theory just been created
  1252. *
  1253. IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
  1254. *
  1255. * generate rotation to annihilate a(i,i+k-ka-1)
  1256. *
  1257. CALL CLARTG( AB( KA1-K, I+K-KA ), RA1,
  1258. $ RWORK( I+K-KA ), WORK( I+K-KA ), RA )
  1259. *
  1260. * create nonzero element a(i+k,i+k-ka-1) outside the
  1261. * band and store it in WORK(m-kb+i+k)
  1262. *
  1263. T = -BB( K+1, I )*RA1
  1264. WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
  1265. $ CONJG( WORK( I+K-KA ) )*
  1266. $ AB( KA1, I+K-KA )
  1267. AB( KA1, I+K-KA ) = WORK( I+K-KA )*T +
  1268. $ RWORK( I+K-KA )*AB( KA1, I+K-KA )
  1269. RA1 = RA
  1270. END IF
  1271. END IF
  1272. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1273. NR = ( J2+KA-1 ) / KA1
  1274. J1 = J2 - ( NR-1 )*KA1
  1275. IF( UPDATE ) THEN
  1276. J2T = MIN( J2, I-2*KA+K-1 )
  1277. ELSE
  1278. J2T = J2
  1279. END IF
  1280. NRT = ( J2T+KA-1 ) / KA1
  1281. DO 800 J = J1, J2T, KA1
  1282. *
  1283. * create nonzero element a(j+ka,j-1) outside the band
  1284. * and store it in WORK(j)
  1285. *
  1286. WORK( J ) = WORK( J )*AB( KA1, J-1 )
  1287. AB( KA1, J-1 ) = RWORK( J )*AB( KA1, J-1 )
  1288. 800 CONTINUE
  1289. *
  1290. * generate rotations in 1st set to annihilate elements which
  1291. * have been created outside the band
  1292. *
  1293. IF( NRT.GT.0 )
  1294. $ CALL CLARGV( NRT, AB( KA1, J1 ), INCA, WORK( J1 ), KA1,
  1295. $ RWORK( J1 ), KA1 )
  1296. IF( NR.GT.0 ) THEN
  1297. *
  1298. * apply rotations in 1st set from the right
  1299. *
  1300. DO 810 L = 1, KA - 1
  1301. CALL CLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
  1302. $ INCA, RWORK( J1 ), WORK( J1 ), KA1 )
  1303. 810 CONTINUE
  1304. *
  1305. * apply rotations in 1st set from both sides to diagonal
  1306. * blocks
  1307. *
  1308. CALL CLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
  1309. $ AB( 2, J1-1 ), INCA, RWORK( J1 ),
  1310. $ WORK( J1 ), KA1 )
  1311. *
  1312. CALL CLACGV( NR, WORK( J1 ), KA1 )
  1313. END IF
  1314. *
  1315. * start applying rotations in 1st set from the left
  1316. *
  1317. DO 820 L = KA - 1, KB - K + 1, -1
  1318. NRT = ( J2+L-1 ) / KA1
  1319. J1T = J2 - ( NRT-1 )*KA1
  1320. IF( NRT.GT.0 )
  1321. $ CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
  1322. $ AB( KA1-L, J1T-KA1+L ), INCA,
  1323. $ RWORK( J1T ), WORK( J1T ), KA1 )
  1324. 820 CONTINUE
  1325. *
  1326. IF( WANTX ) THEN
  1327. *
  1328. * post-multiply X by product of rotations in 1st set
  1329. *
  1330. DO 830 J = J1, J2, KA1
  1331. CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1332. $ RWORK( J ), CONJG( WORK( J ) ) )
  1333. 830 CONTINUE
  1334. END IF
  1335. 840 CONTINUE
  1336. *
  1337. IF( UPDATE ) THEN
  1338. IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
  1339. *
  1340. * create nonzero element a(i+kbt,i+kbt-ka-1) outside the
  1341. * band and store it in WORK(m-kb+i+kbt)
  1342. *
  1343. WORK( M-KB+I+KBT ) = -BB( KBT+1, I )*RA1
  1344. END IF
  1345. END IF
  1346. *
  1347. DO 880 K = KB, 1, -1
  1348. IF( UPDATE ) THEN
  1349. J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
  1350. ELSE
  1351. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1352. END IF
  1353. *
  1354. * finish applying rotations in 2nd set from the left
  1355. *
  1356. DO 850 L = KB - K, 1, -1
  1357. NRT = ( J2+KA+L-1 ) / KA1
  1358. J1T = J2 - ( NRT-1 )*KA1
  1359. IF( NRT.GT.0 )
  1360. $ CALL CLARTV( NRT, AB( KA1-L+1, J1T+L-1 ), INCA,
  1361. $ AB( KA1-L, J1T+L-1 ), INCA,
  1362. $ RWORK( M-KB+J1T+KA ),
  1363. $ WORK( M-KB+J1T+KA ), KA1 )
  1364. 850 CONTINUE
  1365. NR = ( J2+KA-1 ) / KA1
  1366. J1 = J2 - ( NR-1 )*KA1
  1367. DO 860 J = J1, J2, KA1
  1368. WORK( M-KB+J ) = WORK( M-KB+J+KA )
  1369. RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
  1370. 860 CONTINUE
  1371. DO 870 J = J1, J2, KA1
  1372. *
  1373. * create nonzero element a(j+ka,j-1) outside the band
  1374. * and store it in WORK(m-kb+j)
  1375. *
  1376. WORK( M-KB+J ) = WORK( M-KB+J )*AB( KA1, J-1 )
  1377. AB( KA1, J-1 ) = RWORK( M-KB+J )*AB( KA1, J-1 )
  1378. 870 CONTINUE
  1379. IF( UPDATE ) THEN
  1380. IF( I+K.GT.KA1 .AND. K.LE.KBT )
  1381. $ WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
  1382. END IF
  1383. 880 CONTINUE
  1384. *
  1385. DO 920 K = KB, 1, -1
  1386. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1387. NR = ( J2+KA-1 ) / KA1
  1388. J1 = J2 - ( NR-1 )*KA1
  1389. IF( NR.GT.0 ) THEN
  1390. *
  1391. * generate rotations in 2nd set to annihilate elements
  1392. * which have been created outside the band
  1393. *
  1394. CALL CLARGV( NR, AB( KA1, J1 ), INCA, WORK( M-KB+J1 ),
  1395. $ KA1, RWORK( M-KB+J1 ), KA1 )
  1396. *
  1397. * apply rotations in 2nd set from the right
  1398. *
  1399. DO 890 L = 1, KA - 1
  1400. CALL CLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
  1401. $ INCA, RWORK( M-KB+J1 ), WORK( M-KB+J1 ),
  1402. $ KA1 )
  1403. 890 CONTINUE
  1404. *
  1405. * apply rotations in 2nd set from both sides to diagonal
  1406. * blocks
  1407. *
  1408. CALL CLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
  1409. $ AB( 2, J1-1 ), INCA, RWORK( M-KB+J1 ),
  1410. $ WORK( M-KB+J1 ), KA1 )
  1411. *
  1412. CALL CLACGV( NR, WORK( M-KB+J1 ), KA1 )
  1413. END IF
  1414. *
  1415. * start applying rotations in 2nd set from the left
  1416. *
  1417. DO 900 L = KA - 1, KB - K + 1, -1
  1418. NRT = ( J2+L-1 ) / KA1
  1419. J1T = J2 - ( NRT-1 )*KA1
  1420. IF( NRT.GT.0 )
  1421. $ CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
  1422. $ AB( KA1-L, J1T-KA1+L ), INCA,
  1423. $ RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
  1424. $ KA1 )
  1425. 900 CONTINUE
  1426. *
  1427. IF( WANTX ) THEN
  1428. *
  1429. * post-multiply X by product of rotations in 2nd set
  1430. *
  1431. DO 910 J = J1, J2, KA1
  1432. CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1433. $ RWORK( M-KB+J ), CONJG( WORK( M-KB+J ) ) )
  1434. 910 CONTINUE
  1435. END IF
  1436. 920 CONTINUE
  1437. *
  1438. DO 940 K = 1, KB - 1
  1439. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1440. *
  1441. * finish applying rotations in 1st set from the left
  1442. *
  1443. DO 930 L = KB - K, 1, -1
  1444. NRT = ( J2+L-1 ) / KA1
  1445. J1T = J2 - ( NRT-1 )*KA1
  1446. IF( NRT.GT.0 )
  1447. $ CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
  1448. $ AB( KA1-L, J1T-KA1+L ), INCA,
  1449. $ RWORK( J1T ), WORK( J1T ), KA1 )
  1450. 930 CONTINUE
  1451. 940 CONTINUE
  1452. *
  1453. IF( KB.GT.1 ) THEN
  1454. DO 950 J = 2, I2 - KA
  1455. RWORK( J ) = RWORK( J+KA )
  1456. WORK( J ) = WORK( J+KA )
  1457. 950 CONTINUE
  1458. END IF
  1459. *
  1460. END IF
  1461. *
  1462. GO TO 490
  1463. *
  1464. * End of CHBGST
  1465. *
  1466. END