You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbgvx.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526
  1. *> \brief \b CHBGVX
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHBGVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
  22. * LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
  23. * LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
  28. * $ N
  29. * REAL ABSTOL, VL, VU
  30. * ..
  31. * .. Array Arguments ..
  32. * INTEGER IFAIL( * ), IWORK( * )
  33. * REAL RWORK( * ), W( * )
  34. * COMPLEX AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
  35. * $ WORK( * ), Z( LDZ, * )
  36. * ..
  37. *
  38. *
  39. *> \par Purpose:
  40. * =============
  41. *>
  42. *> \verbatim
  43. *>
  44. *> CHBGVX computes all the eigenvalues, and optionally, the eigenvectors
  45. *> of a complex generalized Hermitian-definite banded eigenproblem, of
  46. *> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
  47. *> and banded, and B is also positive definite. Eigenvalues and
  48. *> eigenvectors can be selected by specifying either all eigenvalues,
  49. *> a range of values or a range of indices for the desired eigenvalues.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] JOBZ
  56. *> \verbatim
  57. *> JOBZ is CHARACTER*1
  58. *> = 'N': Compute eigenvalues only;
  59. *> = 'V': Compute eigenvalues and eigenvectors.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] RANGE
  63. *> \verbatim
  64. *> RANGE is CHARACTER*1
  65. *> = 'A': all eigenvalues will be found;
  66. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  67. *> will be found;
  68. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] UPLO
  72. *> \verbatim
  73. *> UPLO is CHARACTER*1
  74. *> = 'U': Upper triangles of A and B are stored;
  75. *> = 'L': Lower triangles of A and B are stored.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] N
  79. *> \verbatim
  80. *> N is INTEGER
  81. *> The order of the matrices A and B. N >= 0.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] KA
  85. *> \verbatim
  86. *> KA is INTEGER
  87. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  88. *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] KB
  92. *> \verbatim
  93. *> KB is INTEGER
  94. *> The number of superdiagonals of the matrix B if UPLO = 'U',
  95. *> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
  96. *> \endverbatim
  97. *>
  98. *> \param[in,out] AB
  99. *> \verbatim
  100. *> AB is COMPLEX array, dimension (LDAB, N)
  101. *> On entry, the upper or lower triangle of the Hermitian band
  102. *> matrix A, stored in the first ka+1 rows of the array. The
  103. *> j-th column of A is stored in the j-th column of the array AB
  104. *> as follows:
  105. *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
  106. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
  107. *>
  108. *> On exit, the contents of AB are destroyed.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDAB
  112. *> \verbatim
  113. *> LDAB is INTEGER
  114. *> The leading dimension of the array AB. LDAB >= KA+1.
  115. *> \endverbatim
  116. *>
  117. *> \param[in,out] BB
  118. *> \verbatim
  119. *> BB is COMPLEX array, dimension (LDBB, N)
  120. *> On entry, the upper or lower triangle of the Hermitian band
  121. *> matrix B, stored in the first kb+1 rows of the array. The
  122. *> j-th column of B is stored in the j-th column of the array BB
  123. *> as follows:
  124. *> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
  125. *> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
  126. *>
  127. *> On exit, the factor S from the split Cholesky factorization
  128. *> B = S**H*S, as returned by CPBSTF.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] LDBB
  132. *> \verbatim
  133. *> LDBB is INTEGER
  134. *> The leading dimension of the array BB. LDBB >= KB+1.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] Q
  138. *> \verbatim
  139. *> Q is COMPLEX array, dimension (LDQ, N)
  140. *> If JOBZ = 'V', the n-by-n matrix used in the reduction of
  141. *> A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
  142. *> and consequently C to tridiagonal form.
  143. *> If JOBZ = 'N', the array Q is not referenced.
  144. *> \endverbatim
  145. *>
  146. *> \param[in] LDQ
  147. *> \verbatim
  148. *> LDQ is INTEGER
  149. *> The leading dimension of the array Q. If JOBZ = 'N',
  150. *> LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
  151. *> \endverbatim
  152. *>
  153. *> \param[in] VL
  154. *> \verbatim
  155. *> VL is REAL
  156. *> \endverbatim
  157. *>
  158. *> \param[in] VU
  159. *> \verbatim
  160. *> VU is REAL
  161. *>
  162. *> If RANGE='V', the lower and upper bounds of the interval to
  163. *> be searched for eigenvalues. VL < VU.
  164. *> Not referenced if RANGE = 'A' or 'I'.
  165. *> \endverbatim
  166. *>
  167. *> \param[in] IL
  168. *> \verbatim
  169. *> IL is INTEGER
  170. *> \endverbatim
  171. *>
  172. *> \param[in] IU
  173. *> \verbatim
  174. *> IU is INTEGER
  175. *>
  176. *> If RANGE='I', the indices (in ascending order) of the
  177. *> smallest and largest eigenvalues to be returned.
  178. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  179. *> Not referenced if RANGE = 'A' or 'V'.
  180. *> \endverbatim
  181. *>
  182. *> \param[in] ABSTOL
  183. *> \verbatim
  184. *> ABSTOL is REAL
  185. *> The absolute error tolerance for the eigenvalues.
  186. *> An approximate eigenvalue is accepted as converged
  187. *> when it is determined to lie in an interval [a,b]
  188. *> of width less than or equal to
  189. *>
  190. *> ABSTOL + EPS * max( |a|,|b| ) ,
  191. *>
  192. *> where EPS is the machine precision. If ABSTOL is less than
  193. *> or equal to zero, then EPS*|T| will be used in its place,
  194. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  195. *> by reducing AP to tridiagonal form.
  196. *>
  197. *> Eigenvalues will be computed most accurately when ABSTOL is
  198. *> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
  199. *> If this routine returns with INFO>0, indicating that some
  200. *> eigenvectors did not converge, try setting ABSTOL to
  201. *> 2*SLAMCH('S').
  202. *> \endverbatim
  203. *>
  204. *> \param[out] M
  205. *> \verbatim
  206. *> M is INTEGER
  207. *> The total number of eigenvalues found. 0 <= M <= N.
  208. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  209. *> \endverbatim
  210. *>
  211. *> \param[out] W
  212. *> \verbatim
  213. *> W is REAL array, dimension (N)
  214. *> If INFO = 0, the eigenvalues in ascending order.
  215. *> \endverbatim
  216. *>
  217. *> \param[out] Z
  218. *> \verbatim
  219. *> Z is COMPLEX array, dimension (LDZ, N)
  220. *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  221. *> eigenvectors, with the i-th column of Z holding the
  222. *> eigenvector associated with W(i). The eigenvectors are
  223. *> normalized so that Z**H*B*Z = I.
  224. *> If JOBZ = 'N', then Z is not referenced.
  225. *> \endverbatim
  226. *>
  227. *> \param[in] LDZ
  228. *> \verbatim
  229. *> LDZ is INTEGER
  230. *> The leading dimension of the array Z. LDZ >= 1, and if
  231. *> JOBZ = 'V', LDZ >= N.
  232. *> \endverbatim
  233. *>
  234. *> \param[out] WORK
  235. *> \verbatim
  236. *> WORK is COMPLEX array, dimension (N)
  237. *> \endverbatim
  238. *>
  239. *> \param[out] RWORK
  240. *> \verbatim
  241. *> RWORK is REAL array, dimension (7*N)
  242. *> \endverbatim
  243. *>
  244. *> \param[out] IWORK
  245. *> \verbatim
  246. *> IWORK is INTEGER array, dimension (5*N)
  247. *> \endverbatim
  248. *>
  249. *> \param[out] IFAIL
  250. *> \verbatim
  251. *> IFAIL is INTEGER array, dimension (N)
  252. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  253. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  254. *> indices of the eigenvectors that failed to converge.
  255. *> If JOBZ = 'N', then IFAIL is not referenced.
  256. *> \endverbatim
  257. *>
  258. *> \param[out] INFO
  259. *> \verbatim
  260. *> INFO is INTEGER
  261. *> = 0: successful exit
  262. *> < 0: if INFO = -i, the i-th argument had an illegal value
  263. *> > 0: if INFO = i, and i is:
  264. *> <= N: then i eigenvectors failed to converge. Their
  265. *> indices are stored in array IFAIL.
  266. *> > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF
  267. *> returned INFO = i: B is not positive definite.
  268. *> The factorization of B could not be completed and
  269. *> no eigenvalues or eigenvectors were computed.
  270. *> \endverbatim
  271. *
  272. * Authors:
  273. * ========
  274. *
  275. *> \author Univ. of Tennessee
  276. *> \author Univ. of California Berkeley
  277. *> \author Univ. of Colorado Denver
  278. *> \author NAG Ltd.
  279. *
  280. *> \date November 2015
  281. *
  282. *> \ingroup complexOTHEReigen
  283. *
  284. *> \par Contributors:
  285. * ==================
  286. *>
  287. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  288. *
  289. * =====================================================================
  290. SUBROUTINE CHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
  291. $ LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
  292. $ LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
  293. *
  294. * -- LAPACK driver routine (version 3.6.0) --
  295. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  296. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  297. * November 2015
  298. *
  299. * .. Scalar Arguments ..
  300. CHARACTER JOBZ, RANGE, UPLO
  301. INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
  302. $ N
  303. REAL ABSTOL, VL, VU
  304. * ..
  305. * .. Array Arguments ..
  306. INTEGER IFAIL( * ), IWORK( * )
  307. REAL RWORK( * ), W( * )
  308. COMPLEX AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
  309. $ WORK( * ), Z( LDZ, * )
  310. * ..
  311. *
  312. * =====================================================================
  313. *
  314. * .. Parameters ..
  315. REAL ZERO
  316. PARAMETER ( ZERO = 0.0E+0 )
  317. COMPLEX CZERO, CONE
  318. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  319. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  320. * ..
  321. * .. Local Scalars ..
  322. LOGICAL ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
  323. CHARACTER ORDER, VECT
  324. INTEGER I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
  325. $ INDIWK, INDRWK, INDWRK, ITMP1, J, JJ, NSPLIT
  326. REAL TMP1
  327. * ..
  328. * .. External Functions ..
  329. LOGICAL LSAME
  330. EXTERNAL LSAME
  331. * ..
  332. * .. External Subroutines ..
  333. EXTERNAL CCOPY, CGEMV, CHBGST, CHBTRD, CLACPY, CPBSTF,
  334. $ CSTEIN, CSTEQR, CSWAP, SCOPY, SSTEBZ, SSTERF,
  335. $ XERBLA
  336. * ..
  337. * .. Intrinsic Functions ..
  338. INTRINSIC MIN
  339. * ..
  340. * .. Executable Statements ..
  341. *
  342. * Test the input parameters.
  343. *
  344. WANTZ = LSAME( JOBZ, 'V' )
  345. UPPER = LSAME( UPLO, 'U' )
  346. ALLEIG = LSAME( RANGE, 'A' )
  347. VALEIG = LSAME( RANGE, 'V' )
  348. INDEIG = LSAME( RANGE, 'I' )
  349. *
  350. INFO = 0
  351. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  352. INFO = -1
  353. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  354. INFO = -2
  355. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  356. INFO = -3
  357. ELSE IF( N.LT.0 ) THEN
  358. INFO = -4
  359. ELSE IF( KA.LT.0 ) THEN
  360. INFO = -5
  361. ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
  362. INFO = -6
  363. ELSE IF( LDAB.LT.KA+1 ) THEN
  364. INFO = -8
  365. ELSE IF( LDBB.LT.KB+1 ) THEN
  366. INFO = -10
  367. ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
  368. INFO = -12
  369. ELSE
  370. IF( VALEIG ) THEN
  371. IF( N.GT.0 .AND. VU.LE.VL )
  372. $ INFO = -14
  373. ELSE IF( INDEIG ) THEN
  374. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  375. INFO = -15
  376. ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  377. INFO = -16
  378. END IF
  379. END IF
  380. END IF
  381. IF( INFO.EQ.0) THEN
  382. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  383. INFO = -21
  384. END IF
  385. END IF
  386. *
  387. IF( INFO.NE.0 ) THEN
  388. CALL XERBLA( 'CHBGVX', -INFO )
  389. RETURN
  390. END IF
  391. *
  392. * Quick return if possible
  393. *
  394. M = 0
  395. IF( N.EQ.0 )
  396. $ RETURN
  397. *
  398. * Form a split Cholesky factorization of B.
  399. *
  400. CALL CPBSTF( UPLO, N, KB, BB, LDBB, INFO )
  401. IF( INFO.NE.0 ) THEN
  402. INFO = N + INFO
  403. RETURN
  404. END IF
  405. *
  406. * Transform problem to standard eigenvalue problem.
  407. *
  408. CALL CHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
  409. $ WORK, RWORK, IINFO )
  410. *
  411. * Solve the standard eigenvalue problem.
  412. * Reduce Hermitian band matrix to tridiagonal form.
  413. *
  414. INDD = 1
  415. INDE = INDD + N
  416. INDRWK = INDE + N
  417. INDWRK = 1
  418. IF( WANTZ ) THEN
  419. VECT = 'U'
  420. ELSE
  421. VECT = 'N'
  422. END IF
  423. CALL CHBTRD( VECT, UPLO, N, KA, AB, LDAB, RWORK( INDD ),
  424. $ RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  425. *
  426. * If all eigenvalues are desired and ABSTOL is less than or equal
  427. * to zero, then call SSTERF or CSTEQR. If this fails for some
  428. * eigenvalue, then try SSTEBZ.
  429. *
  430. TEST = .FALSE.
  431. IF( INDEIG ) THEN
  432. IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  433. TEST = .TRUE.
  434. END IF
  435. END IF
  436. IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  437. CALL SCOPY( N, RWORK( INDD ), 1, W, 1 )
  438. INDEE = INDRWK + 2*N
  439. CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  440. IF( .NOT.WANTZ ) THEN
  441. CALL SSTERF( N, W, RWORK( INDEE ), INFO )
  442. ELSE
  443. CALL CLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  444. CALL CSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  445. $ RWORK( INDRWK ), INFO )
  446. IF( INFO.EQ.0 ) THEN
  447. DO 10 I = 1, N
  448. IFAIL( I ) = 0
  449. 10 CONTINUE
  450. END IF
  451. END IF
  452. IF( INFO.EQ.0 ) THEN
  453. M = N
  454. GO TO 30
  455. END IF
  456. INFO = 0
  457. END IF
  458. *
  459. * Otherwise, call SSTEBZ and, if eigenvectors are desired,
  460. * call CSTEIN.
  461. *
  462. IF( WANTZ ) THEN
  463. ORDER = 'B'
  464. ELSE
  465. ORDER = 'E'
  466. END IF
  467. INDIBL = 1
  468. INDISP = INDIBL + N
  469. INDIWK = INDISP + N
  470. CALL SSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
  471. $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  472. $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  473. $ IWORK( INDIWK ), INFO )
  474. *
  475. IF( WANTZ ) THEN
  476. CALL CSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  477. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  478. $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  479. *
  480. * Apply unitary matrix used in reduction to tridiagonal
  481. * form to eigenvectors returned by CSTEIN.
  482. *
  483. DO 20 J = 1, M
  484. CALL CCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  485. CALL CGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
  486. $ Z( 1, J ), 1 )
  487. 20 CONTINUE
  488. END IF
  489. *
  490. 30 CONTINUE
  491. *
  492. * If eigenvalues are not in order, then sort them, along with
  493. * eigenvectors.
  494. *
  495. IF( WANTZ ) THEN
  496. DO 50 J = 1, M - 1
  497. I = 0
  498. TMP1 = W( J )
  499. DO 40 JJ = J + 1, M
  500. IF( W( JJ ).LT.TMP1 ) THEN
  501. I = JJ
  502. TMP1 = W( JJ )
  503. END IF
  504. 40 CONTINUE
  505. *
  506. IF( I.NE.0 ) THEN
  507. ITMP1 = IWORK( INDIBL+I-1 )
  508. W( I ) = W( J )
  509. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  510. W( J ) = TMP1
  511. IWORK( INDIBL+J-1 ) = ITMP1
  512. CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  513. IF( INFO.NE.0 ) THEN
  514. ITMP1 = IFAIL( I )
  515. IFAIL( I ) = IFAIL( J )
  516. IFAIL( J ) = ITMP1
  517. END IF
  518. END IF
  519. 50 CONTINUE
  520. END IF
  521. *
  522. RETURN
  523. *
  524. * End of CHBGVX
  525. *
  526. END