You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cchkhs.f 42 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168
  1. *> \brief \b CCHKHS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, W1,
  13. * W3, EVECTL, EVECTR, EVECTY, EVECTX, UU, TAU,
  14. * WORK, NWORK, RWORK, IWORK, SELECT, RESULT,
  15. * INFO )
  16. *
  17. * .. Scalar Arguments ..
  18. * INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
  19. * REAL THRESH
  20. * ..
  21. * .. Array Arguments ..
  22. * LOGICAL DOTYPE( * ), SELECT( * )
  23. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  24. * REAL RESULT( 16 ), RWORK( * )
  25. * COMPLEX A( LDA, * ), EVECTL( LDU, * ),
  26. * $ EVECTR( LDU, * ), EVECTX( LDU, * ),
  27. * $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ),
  28. * $ T2( LDA, * ), TAU( * ), U( LDU, * ),
  29. * $ UU( LDU, * ), UZ( LDU, * ), W1( * ), W3( * ),
  30. * $ WORK( * ), Z( LDU, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CCHKHS checks the nonsymmetric eigenvalue problem routines.
  40. *>
  41. *> CGEHRD factors A as U H U' , where ' means conjugate
  42. *> transpose, H is hessenberg, and U is unitary.
  43. *>
  44. *> CUNGHR generates the unitary matrix U.
  45. *>
  46. *> CUNMHR multiplies a matrix by the unitary matrix U.
  47. *>
  48. *> CHSEQR factors H as Z T Z' , where Z is unitary and T
  49. *> is upper triangular. It also computes the eigenvalues,
  50. *> w(1), ..., w(n); we define a diagonal matrix W whose
  51. *> (diagonal) entries are the eigenvalues.
  52. *>
  53. *> CTREVC computes the left eigenvector matrix L and the
  54. *> right eigenvector matrix R for the matrix T. The
  55. *> columns of L are the complex conjugates of the left
  56. *> eigenvectors of T. The columns of R are the right
  57. *> eigenvectors of T. L is lower triangular, and R is
  58. *> upper triangular.
  59. *>
  60. *> CHSEIN computes the left eigenvector matrix Y and the
  61. *> right eigenvector matrix X for the matrix H. The
  62. *> columns of Y are the complex conjugates of the left
  63. *> eigenvectors of H. The columns of X are the right
  64. *> eigenvectors of H. Y is lower triangular, and X is
  65. *> upper triangular.
  66. *>
  67. *> CTREVC3 computes left and right eigenvector matrices
  68. *> from a Schur matrix T and backtransforms them with Z
  69. *> to eigenvector matrices L and R for A. L and R are
  70. *> GE matrices.
  71. *>
  72. *> When CCHKHS is called, a number of matrix "sizes" ("n's") and a
  73. *> number of matrix "types" are specified. For each size ("n")
  74. *> and each type of matrix, one matrix will be generated and used
  75. *> to test the nonsymmetric eigenroutines. For each matrix, 16
  76. *> tests will be performed:
  77. *>
  78. *> (1) | A - U H U**H | / ( |A| n ulp )
  79. *>
  80. *> (2) | I - UU**H | / ( n ulp )
  81. *>
  82. *> (3) | H - Z T Z**H | / ( |H| n ulp )
  83. *>
  84. *> (4) | I - ZZ**H | / ( n ulp )
  85. *>
  86. *> (5) | A - UZ H (UZ)**H | / ( |A| n ulp )
  87. *>
  88. *> (6) | I - UZ (UZ)**H | / ( n ulp )
  89. *>
  90. *> (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp )
  91. *>
  92. *> (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp )
  93. *>
  94. *> (9) | TR - RW | / ( |T| |R| ulp )
  95. *>
  96. *> (10) | L**H T - W**H L | / ( |T| |L| ulp )
  97. *>
  98. *> (11) | HX - XW | / ( |H| |X| ulp )
  99. *>
  100. *> (12) | Y**H H - W**H Y | / ( |H| |Y| ulp )
  101. *>
  102. *> (13) | AX - XW | / ( |A| |X| ulp )
  103. *>
  104. *> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp )
  105. *>
  106. *> (15) | AR - RW | / ( |A| |R| ulp )
  107. *>
  108. *> (16) | LA - WL | / ( |A| |L| ulp )
  109. *>
  110. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  111. *> each element NN(j) specifies one size.
  112. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  113. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  114. *> Currently, the list of possible types is:
  115. *>
  116. *> (1) The zero matrix.
  117. *> (2) The identity matrix.
  118. *> (3) A (transposed) Jordan block, with 1's on the diagonal.
  119. *>
  120. *> (4) A diagonal matrix with evenly spaced entries
  121. *> 1, ..., ULP and random complex angles.
  122. *> (ULP = (first number larger than 1) - 1 )
  123. *> (5) A diagonal matrix with geometrically spaced entries
  124. *> 1, ..., ULP and random complex angles.
  125. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  126. *> and random complex angles.
  127. *>
  128. *> (7) Same as (4), but multiplied by SQRT( overflow threshold )
  129. *> (8) Same as (4), but multiplied by SQRT( underflow threshold )
  130. *>
  131. *> (9) A matrix of the form U' T U, where U is unitary and
  132. *> T has evenly spaced entries 1, ..., ULP with random complex
  133. *> angles on the diagonal and random O(1) entries in the upper
  134. *> triangle.
  135. *>
  136. *> (10) A matrix of the form U' T U, where U is unitary and
  137. *> T has geometrically spaced entries 1, ..., ULP with random
  138. *> complex angles on the diagonal and random O(1) entries in
  139. *> the upper triangle.
  140. *>
  141. *> (11) A matrix of the form U' T U, where U is unitary and
  142. *> T has "clustered" entries 1, ULP,..., ULP with random
  143. *> complex angles on the diagonal and random O(1) entries in
  144. *> the upper triangle.
  145. *>
  146. *> (12) A matrix of the form U' T U, where U is unitary and
  147. *> T has complex eigenvalues randomly chosen from
  148. *> ULP < |z| < 1 and random O(1) entries in the upper
  149. *> triangle.
  150. *>
  151. *> (13) A matrix of the form X' T X, where X has condition
  152. *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
  153. *> with random complex angles on the diagonal and random O(1)
  154. *> entries in the upper triangle.
  155. *>
  156. *> (14) A matrix of the form X' T X, where X has condition
  157. *> SQRT( ULP ) and T has geometrically spaced entries
  158. *> 1, ..., ULP with random complex angles on the diagonal
  159. *> and random O(1) entries in the upper triangle.
  160. *>
  161. *> (15) A matrix of the form X' T X, where X has condition
  162. *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
  163. *> with random complex angles on the diagonal and random O(1)
  164. *> entries in the upper triangle.
  165. *>
  166. *> (16) A matrix of the form X' T X, where X has condition
  167. *> SQRT( ULP ) and T has complex eigenvalues randomly chosen
  168. *> from ULP < |z| < 1 and random O(1) entries in the upper
  169. *> triangle.
  170. *>
  171. *> (17) Same as (16), but multiplied by SQRT( overflow threshold )
  172. *> (18) Same as (16), but multiplied by SQRT( underflow threshold )
  173. *>
  174. *> (19) Nonsymmetric matrix with random entries chosen from |z| < 1
  175. *> (20) Same as (19), but multiplied by SQRT( overflow threshold )
  176. *> (21) Same as (19), but multiplied by SQRT( underflow threshold )
  177. *> \endverbatim
  178. *
  179. * Arguments:
  180. * ==========
  181. *
  182. *> \verbatim
  183. *> NSIZES - INTEGER
  184. *> The number of sizes of matrices to use. If it is zero,
  185. *> CCHKHS does nothing. It must be at least zero.
  186. *> Not modified.
  187. *>
  188. *> NN - INTEGER array, dimension (NSIZES)
  189. *> An array containing the sizes to be used for the matrices.
  190. *> Zero values will be skipped. The values must be at least
  191. *> zero.
  192. *> Not modified.
  193. *>
  194. *> NTYPES - INTEGER
  195. *> The number of elements in DOTYPE. If it is zero, CCHKHS
  196. *> does nothing. It must be at least zero. If it is MAXTYP+1
  197. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  198. *> defined, which is to use whatever matrix is in A. This
  199. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  200. *> DOTYPE(MAXTYP+1) is .TRUE. .
  201. *> Not modified.
  202. *>
  203. *> DOTYPE - LOGICAL array, dimension (NTYPES)
  204. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  205. *> matrix of that size and of type j will be generated.
  206. *> If NTYPES is smaller than the maximum number of types
  207. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  208. *> MAXTYP will not be generated. If NTYPES is larger
  209. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  210. *> will be ignored.
  211. *> Not modified.
  212. *>
  213. *> ISEED - INTEGER array, dimension (4)
  214. *> On entry ISEED specifies the seed of the random number
  215. *> generator. The array elements should be between 0 and 4095;
  216. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  217. *> be odd. The random number generator uses a linear
  218. *> congruential sequence limited to small integers, and so
  219. *> should produce machine independent random numbers. The
  220. *> values of ISEED are changed on exit, and can be used in the
  221. *> next call to CCHKHS to continue the same random number
  222. *> sequence.
  223. *> Modified.
  224. *>
  225. *> THRESH - REAL
  226. *> A test will count as "failed" if the "error", computed as
  227. *> described above, exceeds THRESH. Note that the error
  228. *> is scaled to be O(1), so THRESH should be a reasonably
  229. *> small multiple of 1, e.g., 10 or 100. In particular,
  230. *> it should not depend on the precision (single vs. double)
  231. *> or the size of the matrix. It must be at least zero.
  232. *> Not modified.
  233. *>
  234. *> NOUNIT - INTEGER
  235. *> The FORTRAN unit number for printing out error messages
  236. *> (e.g., if a routine returns IINFO not equal to 0.)
  237. *> Not modified.
  238. *>
  239. *> A - COMPLEX array, dimension (LDA,max(NN))
  240. *> Used to hold the matrix whose eigenvalues are to be
  241. *> computed. On exit, A contains the last matrix actually
  242. *> used.
  243. *> Modified.
  244. *>
  245. *> LDA - INTEGER
  246. *> The leading dimension of A, H, T1 and T2. It must be at
  247. *> least 1 and at least max( NN ).
  248. *> Not modified.
  249. *>
  250. *> H - COMPLEX array, dimension (LDA,max(NN))
  251. *> The upper hessenberg matrix computed by CGEHRD. On exit,
  252. *> H contains the Hessenberg form of the matrix in A.
  253. *> Modified.
  254. *>
  255. *> T1 - COMPLEX array, dimension (LDA,max(NN))
  256. *> The Schur (="quasi-triangular") matrix computed by CHSEQR
  257. *> if Z is computed. On exit, T1 contains the Schur form of
  258. *> the matrix in A.
  259. *> Modified.
  260. *>
  261. *> T2 - COMPLEX array, dimension (LDA,max(NN))
  262. *> The Schur matrix computed by CHSEQR when Z is not computed.
  263. *> This should be identical to T1.
  264. *> Modified.
  265. *>
  266. *> LDU - INTEGER
  267. *> The leading dimension of U, Z, UZ and UU. It must be at
  268. *> least 1 and at least max( NN ).
  269. *> Not modified.
  270. *>
  271. *> U - COMPLEX array, dimension (LDU,max(NN))
  272. *> The unitary matrix computed by CGEHRD.
  273. *> Modified.
  274. *>
  275. *> Z - COMPLEX array, dimension (LDU,max(NN))
  276. *> The unitary matrix computed by CHSEQR.
  277. *> Modified.
  278. *>
  279. *> UZ - COMPLEX array, dimension (LDU,max(NN))
  280. *> The product of U times Z.
  281. *> Modified.
  282. *>
  283. *> W1 - COMPLEX array, dimension (max(NN))
  284. *> The eigenvalues of A, as computed by a full Schur
  285. *> decomposition H = Z T Z'. On exit, W1 contains the
  286. *> eigenvalues of the matrix in A.
  287. *> Modified.
  288. *>
  289. *> W3 - COMPLEX array, dimension (max(NN))
  290. *> The eigenvalues of A, as computed by a partial Schur
  291. *> decomposition (Z not computed, T only computed as much
  292. *> as is necessary for determining eigenvalues). On exit,
  293. *> W3 contains the eigenvalues of the matrix in A, possibly
  294. *> perturbed by CHSEIN.
  295. *> Modified.
  296. *>
  297. *> EVECTL - COMPLEX array, dimension (LDU,max(NN))
  298. *> The conjugate transpose of the (upper triangular) left
  299. *> eigenvector matrix for the matrix in T1.
  300. *> Modified.
  301. *>
  302. *> EVECTR - COMPLEX array, dimension (LDU,max(NN))
  303. *> The (upper triangular) right eigenvector matrix for the
  304. *> matrix in T1.
  305. *> Modified.
  306. *>
  307. *> EVECTY - COMPLEX array, dimension (LDU,max(NN))
  308. *> The conjugate transpose of the left eigenvector matrix
  309. *> for the matrix in H.
  310. *> Modified.
  311. *>
  312. *> EVECTX - COMPLEX array, dimension (LDU,max(NN))
  313. *> The right eigenvector matrix for the matrix in H.
  314. *> Modified.
  315. *>
  316. *> UU - COMPLEX array, dimension (LDU,max(NN))
  317. *> Details of the unitary matrix computed by CGEHRD.
  318. *> Modified.
  319. *>
  320. *> TAU - COMPLEX array, dimension (max(NN))
  321. *> Further details of the unitary matrix computed by CGEHRD.
  322. *> Modified.
  323. *>
  324. *> WORK - COMPLEX array, dimension (NWORK)
  325. *> Workspace.
  326. *> Modified.
  327. *>
  328. *> NWORK - INTEGER
  329. *> The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2.
  330. *>
  331. *> RWORK - REAL array, dimension (max(NN))
  332. *> Workspace. Could be equivalenced to IWORK, but not SELECT.
  333. *> Modified.
  334. *>
  335. *> IWORK - INTEGER array, dimension (max(NN))
  336. *> Workspace.
  337. *> Modified.
  338. *>
  339. *> SELECT - LOGICAL array, dimension (max(NN))
  340. *> Workspace. Could be equivalenced to IWORK, but not RWORK.
  341. *> Modified.
  342. *>
  343. *> RESULT - REAL array, dimension (16)
  344. *> The values computed by the fourteen tests described above.
  345. *> The values are currently limited to 1/ulp, to avoid
  346. *> overflow.
  347. *> Modified.
  348. *>
  349. *> INFO - INTEGER
  350. *> If 0, then everything ran OK.
  351. *> -1: NSIZES < 0
  352. *> -2: Some NN(j) < 0
  353. *> -3: NTYPES < 0
  354. *> -6: THRESH < 0
  355. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  356. *> -14: LDU < 1 or LDU < NMAX.
  357. *> -26: NWORK too small.
  358. *> If CLATMR, CLATMS, or CLATME returns an error code, the
  359. *> absolute value of it is returned.
  360. *> If 1, then CHSEQR could not find all the shifts.
  361. *> If 2, then the EISPACK code (for small blocks) failed.
  362. *> If >2, then 30*N iterations were not enough to find an
  363. *> eigenvalue or to decompose the problem.
  364. *> Modified.
  365. *>
  366. *>-----------------------------------------------------------------------
  367. *>
  368. *> Some Local Variables and Parameters:
  369. *> ---- ----- --------- --- ----------
  370. *>
  371. *> ZERO, ONE Real 0 and 1.
  372. *> MAXTYP The number of types defined.
  373. *> MTEST The number of tests defined: care must be taken
  374. *> that (1) the size of RESULT, (2) the number of
  375. *> tests actually performed, and (3) MTEST agree.
  376. *> NTEST The number of tests performed on this matrix
  377. *> so far. This should be less than MTEST, and
  378. *> equal to it by the last test. It will be less
  379. *> if any of the routines being tested indicates
  380. *> that it could not compute the matrices that
  381. *> would be tested.
  382. *> NMAX Largest value in NN.
  383. *> NMATS The number of matrices generated so far.
  384. *> NERRS The number of tests which have exceeded THRESH
  385. *> so far (computed by SLAFTS).
  386. *> COND, CONDS,
  387. *> IMODE Values to be passed to the matrix generators.
  388. *> ANORM Norm of A; passed to matrix generators.
  389. *>
  390. *> OVFL, UNFL Overflow and underflow thresholds.
  391. *> ULP, ULPINV Finest relative precision and its inverse.
  392. *> RTOVFL, RTUNFL,
  393. *> RTULP, RTULPI Square roots of the previous 4 values.
  394. *>
  395. *> The following four arrays decode JTYPE:
  396. *> KTYPE(j) The general type (1-10) for type "j".
  397. *> KMODE(j) The MODE value to be passed to the matrix
  398. *> generator for type "j".
  399. *> KMAGN(j) The order of magnitude ( O(1),
  400. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  401. *> KCONDS(j) Selects whether CONDS is to be 1 or
  402. *> 1/sqrt(ulp). (0 means irrelevant.)
  403. *> \endverbatim
  404. *
  405. * Authors:
  406. * ========
  407. *
  408. *> \author Univ. of Tennessee
  409. *> \author Univ. of California Berkeley
  410. *> \author Univ. of Colorado Denver
  411. *> \author NAG Ltd.
  412. *
  413. *> \ingroup complex_eig
  414. *
  415. * =====================================================================
  416. SUBROUTINE CCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  417. $ NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, W1,
  418. $ W3, EVECTL, EVECTR, EVECTY, EVECTX, UU, TAU,
  419. $ WORK, NWORK, RWORK, IWORK, SELECT, RESULT,
  420. $ INFO )
  421. *
  422. * -- LAPACK test routine --
  423. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  424. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  425. *
  426. * .. Scalar Arguments ..
  427. INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
  428. REAL THRESH
  429. * ..
  430. * .. Array Arguments ..
  431. LOGICAL DOTYPE( * ), SELECT( * )
  432. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  433. REAL RESULT( 16 ), RWORK( * )
  434. COMPLEX A( LDA, * ), EVECTL( LDU, * ),
  435. $ EVECTR( LDU, * ), EVECTX( LDU, * ),
  436. $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ),
  437. $ T2( LDA, * ), TAU( * ), U( LDU, * ),
  438. $ UU( LDU, * ), UZ( LDU, * ), W1( * ), W3( * ),
  439. $ WORK( * ), Z( LDU, * )
  440. * ..
  441. *
  442. * =====================================================================
  443. *
  444. * .. Parameters ..
  445. REAL ZERO, ONE
  446. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  447. COMPLEX CZERO, CONE
  448. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  449. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  450. INTEGER MAXTYP
  451. PARAMETER ( MAXTYP = 21 )
  452. * ..
  453. * .. Local Scalars ..
  454. LOGICAL BADNN, MATCH
  455. INTEGER I, IHI, IINFO, ILO, IMODE, IN, ITYPE, J, JCOL,
  456. $ JJ, JSIZE, JTYPE, K, MTYPES, N, N1, NERRS,
  457. $ NMATS, NMAX, NTEST, NTESTT
  458. REAL ANINV, ANORM, COND, CONDS, OVFL, RTOVFL, RTULP,
  459. $ RTULPI, RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL
  460. * ..
  461. * .. Local Arrays ..
  462. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
  463. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  464. $ KTYPE( MAXTYP )
  465. REAL DUMMA( 4 )
  466. COMPLEX CDUMMA( 4 )
  467. * ..
  468. * .. External Functions ..
  469. REAL SLAMCH
  470. EXTERNAL SLAMCH
  471. * ..
  472. * .. External Subroutines ..
  473. EXTERNAL CCOPY, CGEHRD, CGEMM, CGET10, CGET22, CHSEIN,
  474. $ CHSEQR, CHST01, CLACPY, CLASET, CLATME, CLATMR,
  475. $ CLATMS, CTREVC, CTREVC3, CUNGHR, CUNMHR,
  476. $ SLABAD, SLAFTS, SLASUM, XERBLA
  477. * ..
  478. * .. Intrinsic Functions ..
  479. INTRINSIC ABS, MAX, MIN, REAL, SQRT
  480. * ..
  481. * .. Data statements ..
  482. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
  483. DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
  484. $ 3, 1, 2, 3 /
  485. DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
  486. $ 1, 5, 5, 5, 4, 3, 1 /
  487. DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
  488. * ..
  489. * .. Executable Statements ..
  490. *
  491. * Check for errors
  492. *
  493. NTESTT = 0
  494. INFO = 0
  495. *
  496. BADNN = .FALSE.
  497. NMAX = 0
  498. DO 10 J = 1, NSIZES
  499. NMAX = MAX( NMAX, NN( J ) )
  500. IF( NN( J ).LT.0 )
  501. $ BADNN = .TRUE.
  502. 10 CONTINUE
  503. *
  504. * Check for errors
  505. *
  506. IF( NSIZES.LT.0 ) THEN
  507. INFO = -1
  508. ELSE IF( BADNN ) THEN
  509. INFO = -2
  510. ELSE IF( NTYPES.LT.0 ) THEN
  511. INFO = -3
  512. ELSE IF( THRESH.LT.ZERO ) THEN
  513. INFO = -6
  514. ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
  515. INFO = -9
  516. ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
  517. INFO = -14
  518. ELSE IF( 4*NMAX*NMAX+2.GT.NWORK ) THEN
  519. INFO = -26
  520. END IF
  521. *
  522. IF( INFO.NE.0 ) THEN
  523. CALL XERBLA( 'CCHKHS', -INFO )
  524. RETURN
  525. END IF
  526. *
  527. * Quick return if possible
  528. *
  529. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  530. $ RETURN
  531. *
  532. * More important constants
  533. *
  534. UNFL = SLAMCH( 'Safe minimum' )
  535. OVFL = SLAMCH( 'Overflow' )
  536. CALL SLABAD( UNFL, OVFL )
  537. ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
  538. ULPINV = ONE / ULP
  539. RTUNFL = SQRT( UNFL )
  540. RTOVFL = SQRT( OVFL )
  541. RTULP = SQRT( ULP )
  542. RTULPI = ONE / RTULP
  543. *
  544. * Loop over sizes, types
  545. *
  546. NERRS = 0
  547. NMATS = 0
  548. *
  549. DO 260 JSIZE = 1, NSIZES
  550. N = NN( JSIZE )
  551. IF( N.EQ.0 )
  552. $ GO TO 260
  553. N1 = MAX( 1, N )
  554. ANINV = ONE / REAL( N1 )
  555. *
  556. IF( NSIZES.NE.1 ) THEN
  557. MTYPES = MIN( MAXTYP, NTYPES )
  558. ELSE
  559. MTYPES = MIN( MAXTYP+1, NTYPES )
  560. END IF
  561. *
  562. DO 250 JTYPE = 1, MTYPES
  563. IF( .NOT.DOTYPE( JTYPE ) )
  564. $ GO TO 250
  565. NMATS = NMATS + 1
  566. NTEST = 0
  567. *
  568. * Save ISEED in case of an error.
  569. *
  570. DO 20 J = 1, 4
  571. IOLDSD( J ) = ISEED( J )
  572. 20 CONTINUE
  573. *
  574. * Initialize RESULT
  575. *
  576. DO 30 J = 1, 14
  577. RESULT( J ) = ZERO
  578. 30 CONTINUE
  579. *
  580. * Compute "A"
  581. *
  582. * Control parameters:
  583. *
  584. * KMAGN KCONDS KMODE KTYPE
  585. * =1 O(1) 1 clustered 1 zero
  586. * =2 large large clustered 2 identity
  587. * =3 small exponential Jordan
  588. * =4 arithmetic diagonal, (w/ eigenvalues)
  589. * =5 random log hermitian, w/ eigenvalues
  590. * =6 random general, w/ eigenvalues
  591. * =7 random diagonal
  592. * =8 random hermitian
  593. * =9 random general
  594. * =10 random triangular
  595. *
  596. IF( MTYPES.GT.MAXTYP )
  597. $ GO TO 100
  598. *
  599. ITYPE = KTYPE( JTYPE )
  600. IMODE = KMODE( JTYPE )
  601. *
  602. * Compute norm
  603. *
  604. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  605. *
  606. 40 CONTINUE
  607. ANORM = ONE
  608. GO TO 70
  609. *
  610. 50 CONTINUE
  611. ANORM = ( RTOVFL*ULP )*ANINV
  612. GO TO 70
  613. *
  614. 60 CONTINUE
  615. ANORM = RTUNFL*N*ULPINV
  616. GO TO 70
  617. *
  618. 70 CONTINUE
  619. *
  620. CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  621. IINFO = 0
  622. COND = ULPINV
  623. *
  624. * Special Matrices
  625. *
  626. IF( ITYPE.EQ.1 ) THEN
  627. *
  628. * Zero
  629. *
  630. IINFO = 0
  631. ELSE IF( ITYPE.EQ.2 ) THEN
  632. *
  633. * Identity
  634. *
  635. DO 80 JCOL = 1, N
  636. A( JCOL, JCOL ) = ANORM
  637. 80 CONTINUE
  638. *
  639. ELSE IF( ITYPE.EQ.3 ) THEN
  640. *
  641. * Jordan Block
  642. *
  643. DO 90 JCOL = 1, N
  644. A( JCOL, JCOL ) = ANORM
  645. IF( JCOL.GT.1 )
  646. $ A( JCOL, JCOL-1 ) = ONE
  647. 90 CONTINUE
  648. *
  649. ELSE IF( ITYPE.EQ.4 ) THEN
  650. *
  651. * Diagonal Matrix, [Eigen]values Specified
  652. *
  653. CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, IMODE, COND,
  654. $ CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
  655. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  656. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  657. *
  658. ELSE IF( ITYPE.EQ.5 ) THEN
  659. *
  660. * Hermitian, eigenvalues specified
  661. *
  662. CALL CLATMS( N, N, 'D', ISEED, 'H', RWORK, IMODE, COND,
  663. $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
  664. *
  665. ELSE IF( ITYPE.EQ.6 ) THEN
  666. *
  667. * General, eigenvalues specified
  668. *
  669. IF( KCONDS( JTYPE ).EQ.1 ) THEN
  670. CONDS = ONE
  671. ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
  672. CONDS = RTULPI
  673. ELSE
  674. CONDS = ZERO
  675. END IF
  676. *
  677. CALL CLATME( N, 'D', ISEED, WORK, IMODE, COND, CONE,
  678. $ 'T', 'T', 'T', RWORK, 4, CONDS, N, N, ANORM,
  679. $ A, LDA, WORK( N+1 ), IINFO )
  680. *
  681. ELSE IF( ITYPE.EQ.7 ) THEN
  682. *
  683. * Diagonal, random eigenvalues
  684. *
  685. CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  686. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  687. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  688. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  689. *
  690. ELSE IF( ITYPE.EQ.8 ) THEN
  691. *
  692. * Hermitian, random eigenvalues
  693. *
  694. CALL CLATMR( N, N, 'D', ISEED, 'H', WORK, 6, ONE, CONE,
  695. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  696. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  697. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  698. *
  699. ELSE IF( ITYPE.EQ.9 ) THEN
  700. *
  701. * General, random eigenvalues
  702. *
  703. CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  704. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  705. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  706. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  707. *
  708. ELSE IF( ITYPE.EQ.10 ) THEN
  709. *
  710. * Triangular, random eigenvalues
  711. *
  712. CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
  713. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  714. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
  715. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  716. *
  717. ELSE
  718. *
  719. IINFO = 1
  720. END IF
  721. *
  722. IF( IINFO.NE.0 ) THEN
  723. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  724. $ IOLDSD
  725. INFO = ABS( IINFO )
  726. RETURN
  727. END IF
  728. *
  729. 100 CONTINUE
  730. *
  731. * Call CGEHRD to compute H and U, do tests.
  732. *
  733. CALL CLACPY( ' ', N, N, A, LDA, H, LDA )
  734. NTEST = 1
  735. *
  736. ILO = 1
  737. IHI = N
  738. *
  739. CALL CGEHRD( N, ILO, IHI, H, LDA, WORK, WORK( N+1 ),
  740. $ NWORK-N, IINFO )
  741. *
  742. IF( IINFO.NE.0 ) THEN
  743. RESULT( 1 ) = ULPINV
  744. WRITE( NOUNIT, FMT = 9999 )'CGEHRD', IINFO, N, JTYPE,
  745. $ IOLDSD
  746. INFO = ABS( IINFO )
  747. GO TO 240
  748. END IF
  749. *
  750. DO 120 J = 1, N - 1
  751. UU( J+1, J ) = CZERO
  752. DO 110 I = J + 2, N
  753. U( I, J ) = H( I, J )
  754. UU( I, J ) = H( I, J )
  755. H( I, J ) = CZERO
  756. 110 CONTINUE
  757. 120 CONTINUE
  758. CALL CCOPY( N-1, WORK, 1, TAU, 1 )
  759. CALL CUNGHR( N, ILO, IHI, U, LDU, WORK, WORK( N+1 ),
  760. $ NWORK-N, IINFO )
  761. NTEST = 2
  762. *
  763. CALL CHST01( N, ILO, IHI, A, LDA, H, LDA, U, LDU, WORK,
  764. $ NWORK, RWORK, RESULT( 1 ) )
  765. *
  766. * Call CHSEQR to compute T1, T2 and Z, do tests.
  767. *
  768. * Eigenvalues only (W3)
  769. *
  770. CALL CLACPY( ' ', N, N, H, LDA, T2, LDA )
  771. NTEST = 3
  772. RESULT( 3 ) = ULPINV
  773. *
  774. CALL CHSEQR( 'E', 'N', N, ILO, IHI, T2, LDA, W3, UZ, LDU,
  775. $ WORK, NWORK, IINFO )
  776. IF( IINFO.NE.0 ) THEN
  777. WRITE( NOUNIT, FMT = 9999 )'CHSEQR(E)', IINFO, N, JTYPE,
  778. $ IOLDSD
  779. IF( IINFO.LE.N+2 ) THEN
  780. INFO = ABS( IINFO )
  781. GO TO 240
  782. END IF
  783. END IF
  784. *
  785. * Eigenvalues (W1) and Full Schur Form (T2)
  786. *
  787. CALL CLACPY( ' ', N, N, H, LDA, T2, LDA )
  788. *
  789. CALL CHSEQR( 'S', 'N', N, ILO, IHI, T2, LDA, W1, UZ, LDU,
  790. $ WORK, NWORK, IINFO )
  791. IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
  792. WRITE( NOUNIT, FMT = 9999 )'CHSEQR(S)', IINFO, N, JTYPE,
  793. $ IOLDSD
  794. INFO = ABS( IINFO )
  795. GO TO 240
  796. END IF
  797. *
  798. * Eigenvalues (W1), Schur Form (T1), and Schur Vectors (UZ)
  799. *
  800. CALL CLACPY( ' ', N, N, H, LDA, T1, LDA )
  801. CALL CLACPY( ' ', N, N, U, LDU, UZ, LDU )
  802. *
  803. CALL CHSEQR( 'S', 'V', N, ILO, IHI, T1, LDA, W1, UZ, LDU,
  804. $ WORK, NWORK, IINFO )
  805. IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
  806. WRITE( NOUNIT, FMT = 9999 )'CHSEQR(V)', IINFO, N, JTYPE,
  807. $ IOLDSD
  808. INFO = ABS( IINFO )
  809. GO TO 240
  810. END IF
  811. *
  812. * Compute Z = U' UZ
  813. *
  814. CALL CGEMM( 'C', 'N', N, N, N, CONE, U, LDU, UZ, LDU, CZERO,
  815. $ Z, LDU )
  816. NTEST = 8
  817. *
  818. * Do Tests 3: | H - Z T Z' | / ( |H| n ulp )
  819. * and 4: | I - Z Z' | / ( n ulp )
  820. *
  821. CALL CHST01( N, ILO, IHI, H, LDA, T1, LDA, Z, LDU, WORK,
  822. $ NWORK, RWORK, RESULT( 3 ) )
  823. *
  824. * Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp )
  825. * and 6: | I - UZ (UZ)' | / ( n ulp )
  826. *
  827. CALL CHST01( N, ILO, IHI, A, LDA, T1, LDA, UZ, LDU, WORK,
  828. $ NWORK, RWORK, RESULT( 5 ) )
  829. *
  830. * Do Test 7: | T2 - T1 | / ( |T| n ulp )
  831. *
  832. CALL CGET10( N, N, T2, LDA, T1, LDA, WORK, RWORK,
  833. $ RESULT( 7 ) )
  834. *
  835. * Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp )
  836. *
  837. TEMP1 = ZERO
  838. TEMP2 = ZERO
  839. DO 130 J = 1, N
  840. TEMP1 = MAX( TEMP1, ABS( W1( J ) ), ABS( W3( J ) ) )
  841. TEMP2 = MAX( TEMP2, ABS( W1( J )-W3( J ) ) )
  842. 130 CONTINUE
  843. *
  844. RESULT( 8 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  845. *
  846. * Compute the Left and Right Eigenvectors of T
  847. *
  848. * Compute the Right eigenvector Matrix:
  849. *
  850. NTEST = 9
  851. RESULT( 9 ) = ULPINV
  852. *
  853. * Select every other eigenvector
  854. *
  855. DO 140 J = 1, N
  856. SELECT( J ) = .FALSE.
  857. 140 CONTINUE
  858. DO 150 J = 1, N, 2
  859. SELECT( J ) = .TRUE.
  860. 150 CONTINUE
  861. CALL CTREVC( 'Right', 'All', SELECT, N, T1, LDA, CDUMMA,
  862. $ LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO )
  863. IF( IINFO.NE.0 ) THEN
  864. WRITE( NOUNIT, FMT = 9999 )'CTREVC(R,A)', IINFO, N,
  865. $ JTYPE, IOLDSD
  866. INFO = ABS( IINFO )
  867. GO TO 240
  868. END IF
  869. *
  870. * Test 9: | TR - RW | / ( |T| |R| ulp )
  871. *
  872. CALL CGET22( 'N', 'N', 'N', N, T1, LDA, EVECTR, LDU, W1,
  873. $ WORK, RWORK, DUMMA( 1 ) )
  874. RESULT( 9 ) = DUMMA( 1 )
  875. IF( DUMMA( 2 ).GT.THRESH ) THEN
  876. WRITE( NOUNIT, FMT = 9998 )'Right', 'CTREVC',
  877. $ DUMMA( 2 ), N, JTYPE, IOLDSD
  878. END IF
  879. *
  880. * Compute selected right eigenvectors and confirm that
  881. * they agree with previous right eigenvectors
  882. *
  883. CALL CTREVC( 'Right', 'Some', SELECT, N, T1, LDA, CDUMMA,
  884. $ LDU, EVECTL, LDU, N, IN, WORK, RWORK, IINFO )
  885. IF( IINFO.NE.0 ) THEN
  886. WRITE( NOUNIT, FMT = 9999 )'CTREVC(R,S)', IINFO, N,
  887. $ JTYPE, IOLDSD
  888. INFO = ABS( IINFO )
  889. GO TO 240
  890. END IF
  891. *
  892. K = 1
  893. MATCH = .TRUE.
  894. DO 170 J = 1, N
  895. IF( SELECT( J ) ) THEN
  896. DO 160 JJ = 1, N
  897. IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) ) THEN
  898. MATCH = .FALSE.
  899. GO TO 180
  900. END IF
  901. 160 CONTINUE
  902. K = K + 1
  903. END IF
  904. 170 CONTINUE
  905. 180 CONTINUE
  906. IF( .NOT.MATCH )
  907. $ WRITE( NOUNIT, FMT = 9997 )'Right', 'CTREVC', N, JTYPE,
  908. $ IOLDSD
  909. *
  910. * Compute the Left eigenvector Matrix:
  911. *
  912. NTEST = 10
  913. RESULT( 10 ) = ULPINV
  914. CALL CTREVC( 'Left', 'All', SELECT, N, T1, LDA, EVECTL, LDU,
  915. $ CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
  916. IF( IINFO.NE.0 ) THEN
  917. WRITE( NOUNIT, FMT = 9999 )'CTREVC(L,A)', IINFO, N,
  918. $ JTYPE, IOLDSD
  919. INFO = ABS( IINFO )
  920. GO TO 240
  921. END IF
  922. *
  923. * Test 10: | LT - WL | / ( |T| |L| ulp )
  924. *
  925. CALL CGET22( 'C', 'N', 'C', N, T1, LDA, EVECTL, LDU, W1,
  926. $ WORK, RWORK, DUMMA( 3 ) )
  927. RESULT( 10 ) = DUMMA( 3 )
  928. IF( DUMMA( 4 ).GT.THRESH ) THEN
  929. WRITE( NOUNIT, FMT = 9998 )'Left', 'CTREVC', DUMMA( 4 ),
  930. $ N, JTYPE, IOLDSD
  931. END IF
  932. *
  933. * Compute selected left eigenvectors and confirm that
  934. * they agree with previous left eigenvectors
  935. *
  936. CALL CTREVC( 'Left', 'Some', SELECT, N, T1, LDA, EVECTR,
  937. $ LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
  938. IF( IINFO.NE.0 ) THEN
  939. WRITE( NOUNIT, FMT = 9999 )'CTREVC(L,S)', IINFO, N,
  940. $ JTYPE, IOLDSD
  941. INFO = ABS( IINFO )
  942. GO TO 240
  943. END IF
  944. *
  945. K = 1
  946. MATCH = .TRUE.
  947. DO 200 J = 1, N
  948. IF( SELECT( J ) ) THEN
  949. DO 190 JJ = 1, N
  950. IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) ) THEN
  951. MATCH = .FALSE.
  952. GO TO 210
  953. END IF
  954. 190 CONTINUE
  955. K = K + 1
  956. END IF
  957. 200 CONTINUE
  958. 210 CONTINUE
  959. IF( .NOT.MATCH )
  960. $ WRITE( NOUNIT, FMT = 9997 )'Left', 'CTREVC', N, JTYPE,
  961. $ IOLDSD
  962. *
  963. * Call CHSEIN for Right eigenvectors of H, do test 11
  964. *
  965. NTEST = 11
  966. RESULT( 11 ) = ULPINV
  967. DO 220 J = 1, N
  968. SELECT( J ) = .TRUE.
  969. 220 CONTINUE
  970. *
  971. CALL CHSEIN( 'Right', 'Qr', 'Ninitv', SELECT, N, H, LDA, W3,
  972. $ CDUMMA, LDU, EVECTX, LDU, N1, IN, WORK, RWORK,
  973. $ IWORK, IWORK, IINFO )
  974. IF( IINFO.NE.0 ) THEN
  975. WRITE( NOUNIT, FMT = 9999 )'CHSEIN(R)', IINFO, N, JTYPE,
  976. $ IOLDSD
  977. INFO = ABS( IINFO )
  978. IF( IINFO.LT.0 )
  979. $ GO TO 240
  980. ELSE
  981. *
  982. * Test 11: | HX - XW | / ( |H| |X| ulp )
  983. *
  984. * (from inverse iteration)
  985. *
  986. CALL CGET22( 'N', 'N', 'N', N, H, LDA, EVECTX, LDU, W3,
  987. $ WORK, RWORK, DUMMA( 1 ) )
  988. IF( DUMMA( 1 ).LT.ULPINV )
  989. $ RESULT( 11 ) = DUMMA( 1 )*ANINV
  990. IF( DUMMA( 2 ).GT.THRESH ) THEN
  991. WRITE( NOUNIT, FMT = 9998 )'Right', 'CHSEIN',
  992. $ DUMMA( 2 ), N, JTYPE, IOLDSD
  993. END IF
  994. END IF
  995. *
  996. * Call CHSEIN for Left eigenvectors of H, do test 12
  997. *
  998. NTEST = 12
  999. RESULT( 12 ) = ULPINV
  1000. DO 230 J = 1, N
  1001. SELECT( J ) = .TRUE.
  1002. 230 CONTINUE
  1003. *
  1004. CALL CHSEIN( 'Left', 'Qr', 'Ninitv', SELECT, N, H, LDA, W3,
  1005. $ EVECTY, LDU, CDUMMA, LDU, N1, IN, WORK, RWORK,
  1006. $ IWORK, IWORK, IINFO )
  1007. IF( IINFO.NE.0 ) THEN
  1008. WRITE( NOUNIT, FMT = 9999 )'CHSEIN(L)', IINFO, N, JTYPE,
  1009. $ IOLDSD
  1010. INFO = ABS( IINFO )
  1011. IF( IINFO.LT.0 )
  1012. $ GO TO 240
  1013. ELSE
  1014. *
  1015. * Test 12: | YH - WY | / ( |H| |Y| ulp )
  1016. *
  1017. * (from inverse iteration)
  1018. *
  1019. CALL CGET22( 'C', 'N', 'C', N, H, LDA, EVECTY, LDU, W3,
  1020. $ WORK, RWORK, DUMMA( 3 ) )
  1021. IF( DUMMA( 3 ).LT.ULPINV )
  1022. $ RESULT( 12 ) = DUMMA( 3 )*ANINV
  1023. IF( DUMMA( 4 ).GT.THRESH ) THEN
  1024. WRITE( NOUNIT, FMT = 9998 )'Left', 'CHSEIN',
  1025. $ DUMMA( 4 ), N, JTYPE, IOLDSD
  1026. END IF
  1027. END IF
  1028. *
  1029. * Call CUNMHR for Right eigenvectors of A, do test 13
  1030. *
  1031. NTEST = 13
  1032. RESULT( 13 ) = ULPINV
  1033. *
  1034. CALL CUNMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
  1035. $ LDU, TAU, EVECTX, LDU, WORK, NWORK, IINFO )
  1036. IF( IINFO.NE.0 ) THEN
  1037. WRITE( NOUNIT, FMT = 9999 )'CUNMHR(L)', IINFO, N, JTYPE,
  1038. $ IOLDSD
  1039. INFO = ABS( IINFO )
  1040. IF( IINFO.LT.0 )
  1041. $ GO TO 240
  1042. ELSE
  1043. *
  1044. * Test 13: | AX - XW | / ( |A| |X| ulp )
  1045. *
  1046. * (from inverse iteration)
  1047. *
  1048. CALL CGET22( 'N', 'N', 'N', N, A, LDA, EVECTX, LDU, W3,
  1049. $ WORK, RWORK, DUMMA( 1 ) )
  1050. IF( DUMMA( 1 ).LT.ULPINV )
  1051. $ RESULT( 13 ) = DUMMA( 1 )*ANINV
  1052. END IF
  1053. *
  1054. * Call CUNMHR for Left eigenvectors of A, do test 14
  1055. *
  1056. NTEST = 14
  1057. RESULT( 14 ) = ULPINV
  1058. *
  1059. CALL CUNMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
  1060. $ LDU, TAU, EVECTY, LDU, WORK, NWORK, IINFO )
  1061. IF( IINFO.NE.0 ) THEN
  1062. WRITE( NOUNIT, FMT = 9999 )'CUNMHR(L)', IINFO, N, JTYPE,
  1063. $ IOLDSD
  1064. INFO = ABS( IINFO )
  1065. IF( IINFO.LT.0 )
  1066. $ GO TO 240
  1067. ELSE
  1068. *
  1069. * Test 14: | YA - WY | / ( |A| |Y| ulp )
  1070. *
  1071. * (from inverse iteration)
  1072. *
  1073. CALL CGET22( 'C', 'N', 'C', N, A, LDA, EVECTY, LDU, W3,
  1074. $ WORK, RWORK, DUMMA( 3 ) )
  1075. IF( DUMMA( 3 ).LT.ULPINV )
  1076. $ RESULT( 14 ) = DUMMA( 3 )*ANINV
  1077. END IF
  1078. *
  1079. * Compute Left and Right Eigenvectors of A
  1080. *
  1081. * Compute a Right eigenvector matrix:
  1082. *
  1083. NTEST = 15
  1084. RESULT( 15 ) = ULPINV
  1085. *
  1086. CALL CLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU )
  1087. *
  1088. CALL CTREVC3( 'Right', 'Back', SELECT, N, T1, LDA, CDUMMA,
  1089. $ LDU, EVECTR, LDU, N, IN, WORK, NWORK, RWORK,
  1090. $ N, IINFO )
  1091. IF( IINFO.NE.0 ) THEN
  1092. WRITE( NOUNIT, FMT = 9999 )'CTREVC3(R,B)', IINFO, N,
  1093. $ JTYPE, IOLDSD
  1094. INFO = ABS( IINFO )
  1095. GO TO 250
  1096. END IF
  1097. *
  1098. * Test 15: | AR - RW | / ( |A| |R| ulp )
  1099. *
  1100. * (from Schur decomposition)
  1101. *
  1102. CALL CGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, W1,
  1103. $ WORK, RWORK, DUMMA( 1 ) )
  1104. RESULT( 15 ) = DUMMA( 1 )
  1105. IF( DUMMA( 2 ).GT.THRESH ) THEN
  1106. WRITE( NOUNIT, FMT = 9998 )'Right', 'CTREVC3',
  1107. $ DUMMA( 2 ), N, JTYPE, IOLDSD
  1108. END IF
  1109. *
  1110. * Compute a Left eigenvector matrix:
  1111. *
  1112. NTEST = 16
  1113. RESULT( 16 ) = ULPINV
  1114. *
  1115. CALL CLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU )
  1116. *
  1117. CALL CTREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL,
  1118. $ LDU, CDUMMA, LDU, N, IN, WORK, NWORK, RWORK,
  1119. $ N, IINFO )
  1120. IF( IINFO.NE.0 ) THEN
  1121. WRITE( NOUNIT, FMT = 9999 )'CTREVC3(L,B)', IINFO, N,
  1122. $ JTYPE, IOLDSD
  1123. INFO = ABS( IINFO )
  1124. GO TO 250
  1125. END IF
  1126. *
  1127. * Test 16: | LA - WL | / ( |A| |L| ulp )
  1128. *
  1129. * (from Schur decomposition)
  1130. *
  1131. CALL CGET22( 'Conj', 'N', 'Conj', N, A, LDA, EVECTL, LDU,
  1132. $ W1, WORK, RWORK, DUMMA( 3 ) )
  1133. RESULT( 16 ) = DUMMA( 3 )
  1134. IF( DUMMA( 4 ).GT.THRESH ) THEN
  1135. WRITE( NOUNIT, FMT = 9998 )'Left', 'CTREVC3', DUMMA( 4 ),
  1136. $ N, JTYPE, IOLDSD
  1137. END IF
  1138. *
  1139. * End of Loop -- Check for RESULT(j) > THRESH
  1140. *
  1141. 240 CONTINUE
  1142. *
  1143. NTESTT = NTESTT + NTEST
  1144. CALL SLAFTS( 'CHS', N, N, JTYPE, NTEST, RESULT, IOLDSD,
  1145. $ THRESH, NOUNIT, NERRS )
  1146. *
  1147. 250 CONTINUE
  1148. 260 CONTINUE
  1149. *
  1150. * Summary
  1151. *
  1152. CALL SLASUM( 'CHS', NOUNIT, NERRS, NTESTT )
  1153. *
  1154. RETURN
  1155. *
  1156. 9999 FORMAT( ' CCHKHS: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  1157. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1158. 9998 FORMAT( ' CCHKHS: ', A, ' Eigenvectors from ', A, ' incorrectly ',
  1159. $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
  1160. $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
  1161. $ ')' )
  1162. 9997 FORMAT( ' CCHKHS: Selected ', A, ' Eigenvectors from ', A,
  1163. $ ' do not match other eigenvectors ', 9X, 'N=', I6,
  1164. $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1165. *
  1166. * End of CCHKHS
  1167. *
  1168. END