You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsymv.f 9.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. *> \brief \b ZSYMV computes a matrix-vector product for a complex symmetric matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSYMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsymv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsymv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsymv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INCX, INCY, LDA, N
  26. * COMPLEX*16 ALPHA, BETA
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), X( * ), Y( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZSYMV performs the matrix-vector operation
  39. *>
  40. *> y := alpha*A*x + beta*y,
  41. *>
  42. *> where alpha and beta are scalars, x and y are n element vectors and
  43. *> A is an n by n symmetric matrix.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> On entry, UPLO specifies whether the upper or lower
  53. *> triangular part of the array A is to be referenced as
  54. *> follows:
  55. *>
  56. *> UPLO = 'U' or 'u' Only the upper triangular part of A
  57. *> is to be referenced.
  58. *>
  59. *> UPLO = 'L' or 'l' Only the lower triangular part of A
  60. *> is to be referenced.
  61. *>
  62. *> Unchanged on exit.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> On entry, N specifies the order of the matrix A.
  69. *> N must be at least zero.
  70. *> Unchanged on exit.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] ALPHA
  74. *> \verbatim
  75. *> ALPHA is COMPLEX*16
  76. *> On entry, ALPHA specifies the scalar alpha.
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] A
  81. *> \verbatim
  82. *> A is COMPLEX*16 array, dimension ( LDA, N )
  83. *> Before entry, with UPLO = 'U' or 'u', the leading n by n
  84. *> upper triangular part of the array A must contain the upper
  85. *> triangular part of the symmetric matrix and the strictly
  86. *> lower triangular part of A is not referenced.
  87. *> Before entry, with UPLO = 'L' or 'l', the leading n by n
  88. *> lower triangular part of the array A must contain the lower
  89. *> triangular part of the symmetric matrix and the strictly
  90. *> upper triangular part of A is not referenced.
  91. *> Unchanged on exit.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDA
  95. *> \verbatim
  96. *> LDA is INTEGER
  97. *> On entry, LDA specifies the first dimension of A as declared
  98. *> in the calling (sub) program. LDA must be at least
  99. *> max( 1, N ).
  100. *> Unchanged on exit.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] X
  104. *> \verbatim
  105. *> X is COMPLEX*16 array, dimension at least
  106. *> ( 1 + ( N - 1 )*abs( INCX ) ).
  107. *> Before entry, the incremented array X must contain the N-
  108. *> element vector x.
  109. *> Unchanged on exit.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] INCX
  113. *> \verbatim
  114. *> INCX is INTEGER
  115. *> On entry, INCX specifies the increment for the elements of
  116. *> X. INCX must not be zero.
  117. *> Unchanged on exit.
  118. *> \endverbatim
  119. *>
  120. *> \param[in] BETA
  121. *> \verbatim
  122. *> BETA is COMPLEX*16
  123. *> On entry, BETA specifies the scalar beta. When BETA is
  124. *> supplied as zero then Y need not be set on input.
  125. *> Unchanged on exit.
  126. *> \endverbatim
  127. *>
  128. *> \param[in,out] Y
  129. *> \verbatim
  130. *> Y is COMPLEX*16 array, dimension at least
  131. *> ( 1 + ( N - 1 )*abs( INCY ) ).
  132. *> Before entry, the incremented array Y must contain the n
  133. *> element vector y. On exit, Y is overwritten by the updated
  134. *> vector y.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] INCY
  138. *> \verbatim
  139. *> INCY is INTEGER
  140. *> On entry, INCY specifies the increment for the elements of
  141. *> Y. INCY must not be zero.
  142. *> Unchanged on exit.
  143. *> \endverbatim
  144. *
  145. * Authors:
  146. * ========
  147. *
  148. *> \author Univ. of Tennessee
  149. *> \author Univ. of California Berkeley
  150. *> \author Univ. of Colorado Denver
  151. *> \author NAG Ltd.
  152. *
  153. *> \ingroup complex16SYauxiliary
  154. *
  155. * =====================================================================
  156. SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
  157. *
  158. * -- LAPACK auxiliary routine --
  159. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  160. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  161. *
  162. * .. Scalar Arguments ..
  163. CHARACTER UPLO
  164. INTEGER INCX, INCY, LDA, N
  165. COMPLEX*16 ALPHA, BETA
  166. * ..
  167. * .. Array Arguments ..
  168. COMPLEX*16 A( LDA, * ), X( * ), Y( * )
  169. * ..
  170. *
  171. * =====================================================================
  172. *
  173. * .. Parameters ..
  174. COMPLEX*16 ONE
  175. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  176. COMPLEX*16 ZERO
  177. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  178. * ..
  179. * .. Local Scalars ..
  180. INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
  181. COMPLEX*16 TEMP1, TEMP2
  182. * ..
  183. * .. External Functions ..
  184. LOGICAL LSAME
  185. EXTERNAL LSAME
  186. * ..
  187. * .. External Subroutines ..
  188. EXTERNAL XERBLA
  189. * ..
  190. * .. Intrinsic Functions ..
  191. INTRINSIC MAX
  192. * ..
  193. * .. Executable Statements ..
  194. *
  195. * Test the input parameters.
  196. *
  197. INFO = 0
  198. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  199. INFO = 1
  200. ELSE IF( N.LT.0 ) THEN
  201. INFO = 2
  202. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  203. INFO = 5
  204. ELSE IF( INCX.EQ.0 ) THEN
  205. INFO = 7
  206. ELSE IF( INCY.EQ.0 ) THEN
  207. INFO = 10
  208. END IF
  209. IF( INFO.NE.0 ) THEN
  210. CALL XERBLA( 'ZSYMV ', INFO )
  211. RETURN
  212. END IF
  213. *
  214. * Quick return if possible.
  215. *
  216. IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
  217. $ RETURN
  218. *
  219. * Set up the start points in X and Y.
  220. *
  221. IF( INCX.GT.0 ) THEN
  222. KX = 1
  223. ELSE
  224. KX = 1 - ( N-1 )*INCX
  225. END IF
  226. IF( INCY.GT.0 ) THEN
  227. KY = 1
  228. ELSE
  229. KY = 1 - ( N-1 )*INCY
  230. END IF
  231. *
  232. * Start the operations. In this version the elements of A are
  233. * accessed sequentially with one pass through the triangular part
  234. * of A.
  235. *
  236. * First form y := beta*y.
  237. *
  238. IF( BETA.NE.ONE ) THEN
  239. IF( INCY.EQ.1 ) THEN
  240. IF( BETA.EQ.ZERO ) THEN
  241. DO 10 I = 1, N
  242. Y( I ) = ZERO
  243. 10 CONTINUE
  244. ELSE
  245. DO 20 I = 1, N
  246. Y( I ) = BETA*Y( I )
  247. 20 CONTINUE
  248. END IF
  249. ELSE
  250. IY = KY
  251. IF( BETA.EQ.ZERO ) THEN
  252. DO 30 I = 1, N
  253. Y( IY ) = ZERO
  254. IY = IY + INCY
  255. 30 CONTINUE
  256. ELSE
  257. DO 40 I = 1, N
  258. Y( IY ) = BETA*Y( IY )
  259. IY = IY + INCY
  260. 40 CONTINUE
  261. END IF
  262. END IF
  263. END IF
  264. IF( ALPHA.EQ.ZERO )
  265. $ RETURN
  266. IF( LSAME( UPLO, 'U' ) ) THEN
  267. *
  268. * Form y when A is stored in upper triangle.
  269. *
  270. IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  271. DO 60 J = 1, N
  272. TEMP1 = ALPHA*X( J )
  273. TEMP2 = ZERO
  274. DO 50 I = 1, J - 1
  275. Y( I ) = Y( I ) + TEMP1*A( I, J )
  276. TEMP2 = TEMP2 + A( I, J )*X( I )
  277. 50 CONTINUE
  278. Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
  279. 60 CONTINUE
  280. ELSE
  281. JX = KX
  282. JY = KY
  283. DO 80 J = 1, N
  284. TEMP1 = ALPHA*X( JX )
  285. TEMP2 = ZERO
  286. IX = KX
  287. IY = KY
  288. DO 70 I = 1, J - 1
  289. Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  290. TEMP2 = TEMP2 + A( I, J )*X( IX )
  291. IX = IX + INCX
  292. IY = IY + INCY
  293. 70 CONTINUE
  294. Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
  295. JX = JX + INCX
  296. JY = JY + INCY
  297. 80 CONTINUE
  298. END IF
  299. ELSE
  300. *
  301. * Form y when A is stored in lower triangle.
  302. *
  303. IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  304. DO 100 J = 1, N
  305. TEMP1 = ALPHA*X( J )
  306. TEMP2 = ZERO
  307. Y( J ) = Y( J ) + TEMP1*A( J, J )
  308. DO 90 I = J + 1, N
  309. Y( I ) = Y( I ) + TEMP1*A( I, J )
  310. TEMP2 = TEMP2 + A( I, J )*X( I )
  311. 90 CONTINUE
  312. Y( J ) = Y( J ) + ALPHA*TEMP2
  313. 100 CONTINUE
  314. ELSE
  315. JX = KX
  316. JY = KY
  317. DO 120 J = 1, N
  318. TEMP1 = ALPHA*X( JX )
  319. TEMP2 = ZERO
  320. Y( JY ) = Y( JY ) + TEMP1*A( J, J )
  321. IX = JX
  322. IY = JY
  323. DO 110 I = J + 1, N
  324. IX = IX + INCX
  325. IY = IY + INCY
  326. Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  327. TEMP2 = TEMP2 + A( I, J )*X( IX )
  328. 110 CONTINUE
  329. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  330. JX = JX + INCX
  331. JY = JY + INCY
  332. 120 CONTINUE
  333. END IF
  334. END IF
  335. *
  336. RETURN
  337. *
  338. * End of ZSYMV
  339. *
  340. END